TASK 210: SURFICIAL SITE INVESTIGATION Volume 1

Reconstruction of Route 1 (Boston Post Road)
From Roses Mill Road to the Orange Town Line
Milford, Connecticut

ConnDOT Assignment No. 200-3617 ConnDOT Project No. 83-230

Prepared for:

State of Connecticut
Department of Transportation
Newington, Connecticut 06131

Prepared by:

Maguire Group Inc.
One Court Street
New Britain, Connecticut 06051

February 10, 2000

TABLE OF CONTENTS

			Page #
1.0	INTRODUC	CTION	1
2.0	SITE DESC	RIPTION	3
	2.1	Background	3
3.0	LOCAL EN	VIRONMENT & RECEPTORS	5
	3.1	Groundwater	5
	3.2	Geology & Topography	7
4.0	SUBSURFA	CE INVESTIGATOIN	7
	4.1	Geoprobe® Soil Borings & Soil Sample Analyses	8
	4.2	Project Quality Assurance/Quality Control Practices	9
5.0	DISCUSSIO	ON OF SAMPLE RESULTS	10
	5.1	Regulatory Criteria	10
	5.2	Results of Soil Sample Analyses	11
	5.3	Quality Assurance/Quality Control Samples	16
6.0	DISCUSSIO	N OF AFFECTED RESOURCES	17
	6.1	Areas of Environmental Concern	17
7.0	RECOMME	ENDATIONS	19
8.0	LIMITATIO	ONS ,	20
	re 1 - Site Loca	ation Plan O Project Area & Sampling Locations	2 6
<u>Table</u> Table	es e 1(a) to 1(n)	Results of Geoprobe® Boring Soil Sampling Analyses	
Appe Appe	endices endix A endix B endix C	Boring Logs Soil Sample Laboratory Reports QA/QC Sample Laboratory Reports	

1.0 INTRODUCTION

On behalf of the Connecticut Department of Transportation (ConnDOT), Maguire Group Inc. has conducted a Task 210 - Surficial Site Investigation in association with the Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line in Milford, Connecticut. The proposed construction project will involve the installation of dual left-turning lanes on U.S. Route 1 in Milford from Roses Mill Road to the Orange Town Line, for a total length of approximately 1,592 meters (5,000 feet). The proposed project will involve the full depth reconstruction of U.S Route 1 (Boston Post Road), the construction of exclusive turning lanes, and traffic control improvements throughout the project length. Based upon a review of the proposed construction plans, it is anticipated that the project will involve rights-of-way taking, cut and fill activities, drainage structure improvements, and utility realignments.

This Task 210 - Surficial Site Investigation was conducted along Route 1 and its associated side-streets, in areas of anticipated construction and/or right-of-way activities, adjacent to properties that were identified as having a moderate or high risk designation in MGI's January, 1999 Task 110 - Corridor Land Use Evaluation report. Figure 1 depicts the project area.

The purpose of the Task 210 - Surficial Site Investigation was to verify the absence or presence and location of subsurface contamination, and to assess the potential pollutant impacts to be encountered during construction. It is anticipated that a Task 310 Remedial Management Plan (RMP) will subsequently be prepared to assess construction related activities (i.e. proper storage, classification, transport and disposal of contaminated materials), in relationship to the environmental conditions prevalent within the project limits, as well as to specify remedial work to be included in the Contract Bid Documents.

Page 2

2.0 SITE DESCRIPTION

2.1 Background

The Task 210 - Surficial Site Investigation was conducted within the areas of proposed construction and/or right-of-way activities in the vicinity of eighteen moderate or high risk designated properties along Route 1. The following summarizes the eighteen parcels and their locations.

1461 Boston Post Road (MGI Parcel A-9) - This parcel was assigned a moderate risk because it was formerly a gasoline station. According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

1463 Boston Post Road (MGI Parcel A-10) - This parcel was assigned a moderate risk because it was formerly a freight company. In addition, the parcel is a suspected State Hazardous Waste Site and it has five (5) registered underground storage tanks (USTs). According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

1470 Boston Post Road (MGI Parcel A-12) - This parcel was assigned a moderate risk because it formerly contained an automobile dealership. The parcel also has five (5) registered USTs on the property. According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

1475 Boston Post Road (MGI Parcel A-15) - This parcel was assigned a moderate risk because it formerly housed a welding shop and an oil company. According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

1503 Boston Post Road (MGI Parcel A-16) - This parcel was assigned a moderate risk because it currently houses a car dealership. In addition, two suspected USTs were observed on the property. According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

1529 Boston Post Road (MGI Parcel B-1) - This parcel was assigned a high risk because it formerly housed a freight shipping company. The site is a former RCRA generator of hazardous waste and has five (5) registered USTs. According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

1496 – 1500 Boston Post Road (MGI Parcel B-2) - This parcel was assigned a moderate risk because it formerly housed a car dealership. In addition, the property has six (6) registered USTs. According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

1550 Boston Post Road (MGI Parcel B-5) - This parcel was assigned a moderate risk because it contains a nursery and garden center. According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

1553 Boston Post Road (MGI Parcel C-1) - This parcel was assigned a high risk because it houses a manufacturing company that is a generator of RCRA hazardous waste. According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

Boston Post Road (MGI Parcel C-2) - This parcel was assigned a high risk because of its proximity to a manufacturing facility and the presence of a monitoring well on-site. According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

1574 Boston Post Road (MGI Parcel C-3) - This parcel was assigned a high risk because it formerly contained an industrial business. In addition, the property has two (2) registered USTs. According to the ConnDOT construction plans for the project, a partial strip take, and cut and fill activities are proposed for this property.

1573 - 1585 Boston Post Road (MGI Parcel C-4) - This parcel was assigned a high risk because it contains a UST, and monitoring wells were observed on-site. According to the ConnDOT construction plans for the project, fill activities are proposed for this property.

1595 - 1607 Boston Post Road (MGI Parcel C-7) - This parcel was assigned a moderate risk because it contains a generator of RCRA hazardous waste. According to the ConnDOT construction plans for the project, fill activities are proposed for this property.

1620 Boston Post Road (MGI Parcel C-8) - This parcel was assigned a high risk because it has a registered UST on the property. According to the ConnDOT construction plans for the project, a partial strip take, and cut and fill activities are proposed for this property.

1634 - 1650 Boston Post Road (MGI Parcel E-1) - This parcel was assigned a moderate risk because it has three (3) registered USTs on-site. According to the ConnDOT construction plans for the project, cut and fill activities are proposed for this property.

1755 Boston Post Road (MGI Parcel F-1) - This parcel was assigned a high rating due to its current use as industrial/manufacturing. The site is a generator of RCRA hazardous waste, and contains two registered USTs. According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

1777 Boston Post Road (MGI Parcel F-2) - This parcel was assigned a high risk because it has a registered UST on-site. According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

1738 Boston Post Road (MGI Parcel G-2) - The Comp-USA parcel was assigned a moderate risk because it currently houses a nursery and garden center. According to the ConnDOT construction plans for the project, a partial strip take and fill activities are proposed for this property.

The site area is depicted in the attached Figure 2 - Task 210 Project Area & Sampling Locations.

3.0 LOCAL ENVIRONMENT & RECEPTORS

3.1 Groundwater

According to the Connecticut Department of Environmental Protection (CTDEP) 1993 Adopted Water Quality Classifications for the South Central Basin, the groundwater classification for the project corridor is "GB". A "GB" groundwater classification indicates that the groundwater has been adversely impacted by waste discharges, spills or leaks of chemicals, or land use impacts. The groundwater is not considered suitable for direct human consumption without the need for treatment. All of the properties within the project corridor are connected to the public water supply system and municipal sewer system. In addition, there are no public water supply wells located within a 1,609 meter (1 mile) radius of the project area, according to the CTDEP Bulletin 4, "The Atlas of the Public Water Supply Sources and Drainage Basins of Connecticut," June, 1982. Groundwater was not encountered in any of the Geoprobe® soil borings advanced during this investigation.

3.2 Geology & Topography

The United States Department of Agriculture Soil Conservation Service's 1992 "Surficial Materials Map of Connecticut" indicates that the soil in the vicinity of the Task 210 project area consists of the Charlton-Hollis formation. This soil unit is described as a brownish, sandy soil with a loamy substratum. The soils encountered during this investigation included brown, very hard-packed sand and silty till units.

The Bedrock Geological Map of Connecticut, compiled by John Rodgers in 1985, indicates that the bedrock unit underlying the Site area is the Lower Member of the Maltby Lakes Metavolcanics, which is a gray to green, fine-grained schist or phyllite. A bluish-green fine-grained phyllite was encountered in all of the borings located within the project corridor area, at depths ranging from 1.2 to 3.7 meters (4 to 12 feet) below grade.

The general surficial topography is relatively flat, with a very gentle downward slope to the south/southeast. Based upon this, it is estimated that surface water runoff flows to the south/southeast.

4.0 SUBSURFACE INVESTIGATION

Based upon the current and past land use of the properties within the project corridor, a comprehensive sampling program was conducted within the proposed construction and right-of-way areas adjacent to the eighteen (18) moderate or high risk designated properties discussed in Section 2.1. The following subsections detail the investigation.

4.1 Geoprobe® Soil Borings & Soil Sample Analyses

On December 13 to December 17, 1999, fifty-three (53) Geoprobe® soil borings were advanced within proposed areas of construction and right-of-way activities adjacent to the eighteen (18) moderate to high risk designated properties. The Geoprobe® borings were advanced by Logical Environmental Solutions, under the direction of MGI. The locations of the Geoprobe® soil borings are depicted on Figure 2 - Task 210 Project Area & Sampling Locations.

The Geoprobe® soil borings were advanced to a depth of 3.7 meters (12 feet) below grade, unless there was refusal on suspected bedrock or a cobble, or 1.2 meters (4 feet) below grade, depending upon the anticipated depth of excavation during construction in each area. The borings were spaced in an approximate 30.5 meter (100 foot) linear grid. Continuous soil samples were collected utilizing a 1.2 meter (4-foot) long, 5 centimeter (2-inch) diameter Macro Core Sampler with dedicated acetate liners. The soil samples were visually inspected in the field for staining, and described as to physical characteristics and soil type. In addition, the soil samples were screened in the field for total volatile organic compounds utilizing a Photovac photoionization detector (PID). Soil boring logs were generated in the field by Maguire field personnel. The boring logs denote the types of soil encountered, the depth to groundwater and/or bedrock, the total depth reached in each boring, and the highest observed PID reading. Copies of the boring logs are included at the end of this report in Appendix A.

Based upon field screening results and visual observations, one soil sample from each boring was placed in glassware supplied by Con-Test Analytical Laboratory, and stored in an ice-filled cooler. The first macro core sample from each boring was segregated and split into a 0 to 0.6 meter (0'-2') sample and a 0.6 to 1.2 meter (2'-4') sample. The shallow soil sample (0 to 0.6 meter/0' to 2' below grade) was selected for laboratory analyses if field screening and visual observation did not indicate the presence of contaminants in the other sample intervals. The analyses for each soil sample included volatile organic compounds (VOCs) utilizing EPA

Method 8260, total petroleum hydrocarbons (TPH) utilizing EPA Method 418.1, polynuclear aromatic hydrocarbons (PAHs) utilizing EPA Method 8270, total RCRA 8 metals, and SPLP RCRA 8 metals.

All Geoprobe® soil borings were back-filled and patched upon completion utilizing clean sand and/or hydrated bentonite. All down-hole sampling equipment was decontaminated in accordance with Maguire's August, 1999 Task 210 Surficial Site Investigation Work Plan.

4.2 Project Quality Assurance/Quality Control Practices

To assess the collection of samples in the field in terms of the sampling techniques and decontamination procedures followed, quality control and quality assurance samples were collected on each day of sampling activities. Five field blank water samples were collected during the field investigation. The field blank samples were prepared by pouring laboratory supplied de-ionized water through an acetate liner and macro core cutting shoe, and collecting the resulting rinsate in appropriate sample containers. In addition, five trip blanks were prepared by Con-Test Laboratory. The trip blank and field blank samples were stored with the daily samples in the sample cooler until subsequent delivery to the laboratory for analysis. The field blanks were analyzed for the same parameters specified for the daily samples. The trip blanks were analyzed for volatile organic compounds.

All samples collected in the field were stored in a manner that preserved the integrity of the sample chemistry. Samples intended for organic analyses were stored in an ice-filled cooler until delivery to the laboratory. Chain-of-Custody (COC) forms were filled out and accompanied all samples collected as a legal record of possession of the sample. The COC was initiated in the field and accompanied the containers during sample collection, transportation to the lab, analysis, and final disposal of the sample. All sampling equipment was either dedicated to a specific sample or was decontaminated prior to and between each use. Sampling equipment was not placed near solvents, gasoline, or other materials that may have impacted the integrity of the samples.

5.0 DISCUSSION OF SAMPLE RESULTS

5.1 Regulatory Criteria

The CTDEP adopted Remediation Standard Regulations (Regulations of Connecticut State Agencies, Section 22a-133k-1 to 3 and 22a-133q-1) as of January 31, 1996. The Remediation Standard Regulations (RSRs) apply to any site undergoing voluntary remediation under Public Acts 95-183 or 95-190, a transfer of an "establishment" under Public Act 95-183, or any site as ordered by the CTDEP Commissioner. The Regulations also outline the processes for establishing alternative site-specific numerical standards for certain sites, upon approval by the CTDEP.

The RSRs criteria applicable to the soil sampled during this investigation are summarized below. The application of these RSRs to the results of the laboratory analyses from this investigation is discussed in subsection 5.2 of this section.

Soils Criteria: The RSRs are organized into two sets of criteria: the Direct Exposure Criteria (DEC) and the Pollutant Mobility Criteria (PMC). The DEC and PMC are briefly explained in the following sub-sections, in relation to how they would be applicable to the types of analyses conducted on the soil samples collected for this investigation. Please refer to the RSRs for a complete explanation of the Regulations.

Direct Exposure Criteria

The purpose of the Direct Exposure Criteria (DEC) is to protect human health from risks associated with the direct contact with or ingestion of various common soil contaminants. The DEC are applicable to soil within approximately 4.6 meters (15 feet) of the ground surface. Concentrations of contaminants are evaluated based upon mass-based analyses and different criteria are established for residential and commercial/industrial properties. The use of the less stringent commercial/industrial standards requires the placement of a land use restriction on the property. The DEC is not applicable to inaccessible soils, including soil more than 1.2 meters

(4 feet) below the ground surface, 0.6 meters (2 feet) below pavement greater than 7.6 centimeters (3 inches) thick, or below an existing building, provided that an Environmental Land Use Restriction (ELUR) is placed in effect for the property.

Pollutant Mobility Criteria

The purpose of the Pollutant Mobility Criteria (PMC) is to evaluate the potential for contaminants to leach from the soil in concentrations that may degrade groundwater quality. Different numerical criteria are established for GA and GAA groundwater areas, versus GB groundwater areas. Since the site is located in a GB groundwater area, the least stringent criteria are applied for contaminants detected in the soil.

5.2 Results of Soil Sample Analyses

Soil samples collected during the advancement of the Geoprobe® borings were sent to Con-Test Analytical Laboratory of East Longmeadow, Massachusetts for laboratory analyses. A summary of the laboratory results from the soil samples is presented in Tables 1(a) to 1(n), which are located at the end of this report, and copies of the soil sample analytical results are included in Appendix B. The following summarizes the results of the analyses conducted on the soil samples.

Varying concentrations of petroleum hydrocarbons (TPH) were detected in all of the borings from Below Detectable Limits (BDL) to 390 parts per million (ppm). However, none of the samples contained TPH concentrations that exceed any applicable CTDEP RSR Criteria.

Seventeen of the fifty-three soil samples analyzed as part of this investigation contained detectable concentrations of volatile organic compounds (VOCs). Methylene chloride (detected in 14 samples) and acetone (detected in 4 samples) were the VOCs detected. However, the concentrations of these compounds detected in the samples did not exceed any applicable CTDEP RSRs. The laboratory acknowledged that the presence of methylene chloride and acetone in the seventeen soil samples is due to laboratory contamination.

Several polynuclear aromatic hydrocarbon (PAH) compounds were detected throughout the project corridor at varying concentrations. Total PAH concentrations ranged from ND to 152.97 ppm. Seventeen (17) samples contained concentrations of PAH compounds that exceed applicable CTDEP RSRs. The GP-3 soil sample contained the compounds benzo(a)anthracene (1.13 ppm), benzo(a)pyrene (1.21 ppm), benzo(b)fluoranthene (2.11 ppm), and chrysene (1.36 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene were detected at concentrations that exceed their respective Residential DEC. The compound benzo(a)pyrene was also detected at a concentration that exceeds the Commercial/Industrial DEC.

The GP-8 soil sample contained the compounds benzo(a)anthracene (1.95 ppm) and benzo(b)fluoranthene (3.57 ppm) at concentrations that exceed their respective GB PMC. The GP-11 soil sample contained the compounds benzo(b)fluoranthene (1.33 ppm) and chrysene (1.07 ppm) at concentrations that exceed their respective GB PMC.

The GP-12 soil sample contained the compounds benzo(a)anthracene (3.57 ppm), benzo(a)pyrene (3.82 ppm), benzo(b)fluoranthene (5.87 ppm), benzo(k)fluoranthene (4.05 ppm), chrysene (4.22 ppm), and indeno(1,2,3-cd)pyrene (1.98 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene were detected at concentrations that exceed their respective Residential DEC. The compound benzo(a)pyrene was also detected at a concentration that exceeds its Commercial/Industrial DEC.

The GP-13 soil sample contained the compounds benzo(a)anthracene (1.12 ppm), benzo(a)pyrene (1.37 ppm), benzo(b)fluoranthene (2.07 ppm), benzo(k)fluoranthene (1.33 ppm), and chrysene (1.2 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene were detected at concentrations that exceed their respective Residential DEC. The compound benzo(a)pyrene was also detected at a concentration that exceeds its Commercial/Industrial DEC.

The GP-17 soil sample contained the compounds benzo(a)anthracene (2.78 ppm), benzo(a)pyrene (2.45 ppm), benzo(b)fluoranthene (3.58 ppm), benzo(k)fluoranthene (2.23 ppm), and chrysene (2.6 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene were detected at concentrations that exceed their respective Residential DEC. The compound benzo(a)pyrene was also detected at a concentration that exceeds its Commercial/Industrial DEC.

The GP-27 soil sample contained the compounds benzo(a)pyrene (1.2 ppm), benzo(b)fluoranthene (1.3 ppm), benzo(k)fluoranthene (1.04 ppm), and chrysene (1.4 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)pyrene, and benzo(b)fluoranthene were detected at concentrations that exceed their respective Residential DEC. The compound benzo(a)pyrene was also detected at a concentration that exceeds its Commercial/Industrial DEC.

The GP-30 soil sample contained the compounds benzo(a)anthracene (5.47 ppm), benzo(a)pyrene (6.52 ppm), benzo(b)fluoranthene (8.48 ppm), benzo(k)fluoranthene (4.32 ppm), chrysene (8.08 ppm), and indeno(1,2,3-cd)pyrene (5.09 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene were detected at concentrations that exceed their respective Residential DEC. The compounds benzo(a)pyrene and benzo(b)fluoranthene were also detected at concentrations that exceed their respective Commercial/Industrial DEC.

The GP-32 soil sample contained the compounds benzo(a)anthracene (2.93 ppm), benzo(b)fluoranthene (3.04 ppm), chrysene (4.5 ppm), and indeno(1,2,3-cd)pyrene (1.87 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene were detected at concentrations that exceed their respective Residential DEC.

The GP-38 soil sample contained the compounds benzo(a)anthracene (4.83 ppm), benzo(a)pyrene (5.91 ppm), benzo(b)fluoranthene (6.77 ppm), benzo(k)fluoranthene (3.6 ppm), chrysene (6.9 ppm), and indeno(1,2,3-cd)pyrene (4.27 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene were detected at concentrations that exceed their respective Residential DEC. The compound benzo(a)pyrene was also detected at a concentration that exceeds its Commercial/Industrial DEC.

The GP-41 soil sample contained the compounds benzo(a)anthracene (1.1 ppm), benzo(a)pyrene (1.16 ppm), benzo(b)fluoranthene (1.29 ppm), and chrysene (1.39 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene were detected at concentrations that exceed their respective Residential DEC. The compound benzo(a)pyrene was also detected at a concentration that exceeds its Commercial/Industrial DEC.

The GP-42 soil sample contained the compounds benzo(a)anthracene (1.22 ppm), benzo(a)pyrene (1.36 ppm), benzo(b)fluoranthene (1.5 ppm), benzo(k)fluoranthene (1.01 ppm), and chrysene (1.55 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene were detected at concentrations that exceed their respective Residential DEC. The compound benzo(a)pyrene was also detected at a concentration that exceeds its Commercial/Industrial DEC.

The GP-46 soil sample contained the compounds benzo(a)anthracene (1.51 ppm), benzo(a)pyrene (1.9 ppm), benzo(b)fluoranthene (2.39 ppm), benzo(k)fluoranthene (1.97 ppm), chrysene (2.34 ppm), and indeno(1,2,3-cd)pyrene (1.52 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene were detected at concentrations that exceed their respective Residential DEC. The compound benzo(a)pyrene was also detected at a concentration that exceeds its Commercial/Industrial DEC.

The GP-47 soil sample contained the compounds benzo(a)anthracene (13.4 ppm), benzo(a)pyrene (11.4 ppm), benzo(b)fluoranthene (14.4 ppm), benzo(k)fluoranthene (14.4 ppm), chrysene (16.4 ppm), and indeno(1,2,3-cd)pyrene (6.44 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno(1,2,3-cd)pyrene were detected at concentrations that exceed their respective Residential DEC. The compounds benzo(a)anthracene, benzo(a)pyrene and benzo(b)fluoranthene were also detected at concentrations that exceed their respective Commercial/Industrial DEC.

The GP-48 soil sample contained the compounds benzo(a)anthracene (1.23 ppm), benzo(a)pyrene (1.4 ppm), benzo(b)fluoranthene (1.71 ppm), benzo(k)fluoranthene (1.38 ppm), and chrysene (1.74 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene were detected at concentrations that exceed their respective Residential DEC. The compound benzo(a)pyrene was also detected at a concentration that exceeds its Commercial/Industrial DEC.

The GP-52 soil sample contained the compounds benzo(a)anthracene (1.07 ppm), benzo(a)pyrene (1.22 ppm), benzo(b)fluoranthene (1.41 ppm), benzo(k)fluoranthene (1.41 ppm), and chrysene (1.41 ppm) at concentrations that exceed their respective GB PMC. In addition, the compounds benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene were detected at concentrations that exceed their respective Residential DEC. The compound benzo(a)pyrene was also detected at a concentration that exceeds its Commercial/Industrial DEC.

The GP-53 soil sample contained the compounds benzo(b)fluoranthene (1.03 ppm) and chrysene (1.09 ppm) at concentrations that exceed their respective GB PMC. In addition, the compound benzo(b)fluoranthene was detected at a concentration that exceeds its Residential DEC.

Total concentrations of the metals arsenic, barium, cadmium, chromium, lead, mercury, and selenium were detected in the soil samples throughout the project corridor. Total arsenic was detected at concentrations ranging from Not Detected (ND) to 15.2 ppm. Arsenic was detected at concentrations that exceed its Residential and Commercial/Industrial DEC of 10 ppm in the following soil samples: GP-4 (11.4), GP-22 (11.5 ppm), GP-29 (11.4 ppm), GP-37 (10.9 ppm), GP-40 (12.0 ppm), GP-41 (11.2 ppm), GP-42 (11.2 ppm), GP-43 (12.1 ppm), GP-46 (11.8 ppm), GP-47 (14.4 ppm), GP-50 (12.2 ppm), GP-52 (13.0 ppm), and GP-53 (15.2 ppm).

Leachable barium and lead (via SPLP) were detected at varying concentrations throughout the project corridor. However, the concentrations detected do not exceed any applicable CTDEP RSR Criteria.

5.3 Quality Assurance/Quality Control Samples

The field blank (FB) and trip blank (TB) water samples were collected on each day of sampling activities. The five field blank samples were analyzed for VOCs, TPH, PAHs, and total RCRA 8 metals. In addition, five trip blank samples were analyzed for VOCs. The metal barium was detected at extremely low concentrations in the FB-3 (0.0006 ppm) and FB-5 (0.0007 ppm) field blank samples. The presence of the small barium concentrations may be due to field contamination or the metals may have been present in the laboratory-supplied water. In addition, the VOC methylene chloride was detected in the TB-4 (5.1 ppb) trip blank sample. The laboratory acknowledged that the presence of methylene chloride in the sample is due to laboratory contamination. No other contaminants were detected above the laboratory detection limits in any of the blank samples.

Copies of the analytical reports associated with the quality assurance/quality control samples are included in Appendix C.

6.0 DISCUSSION OF AFFECTED RESOURCES

6.1 Areas of Environmental Concern

Based upon the results of laboratory analyses performed on soil samples for this Task 210 investigation, seven (7) areas of environmental concern (AOEC) have been identified. The location of the areas within the project corridor is discussed in the following section.

AOEC #1: Borings GP-3 & GP-4: 1738 Boston Post Road

Analytical results from the soil sample collected from boring GP-3 indicates the presence of semi-volatile organic compound (PAH) contamination at slightly elevated concentrations in shallow soil ranging from 0 to 0.6 meter (0 to 2 feet) below grade. The contamination detected exceeds the GA PMC, and Residential and Commercial/Industrial DEC. In addition, the GP-4 soil sample results indicate the presence of total arsenic contamination at slightly elevated concentrations in shallow soil ranging from 0.6 to 1.2 meter (2 to 4 feet) below grade. The contamination detected exceeds the Residential and Commercial/Industrial DEC.

AOEC #2: Borings GP-8, GP-11, GP-12, & GP-13: 1620 - 1650 Boston Post Road

Analytical results from the soil samples collected from borings GP-8, GP-11, GP-12, and GP-13 indicate the presence of semi-volatile organic compound (PAH) contamination at slightly elevated concentrations in shallow soils ranging from 0 to 0.6 meter (0 to 2 feet) below grade. The contamination detected exceeds the GB PMC, and Residential and Commercial/Industrial DEC.

AOEC #3: Boring GP-17: 1550 Boston Post Road

Analytical results from the soil sample collected from boring GP-17 indicate the presence of semi-volatile organic compound (PAH) contamination at slightly elevated concentrations in shallow soil ranging from 0 to 0.6 meter (0 to 2 feet) below grade. The contamination detected exceeds the GB PMC, and Residential and Commercial/Industrial DEC.

AOEC #4: Boring GP-22: 1500 Boston Post Road

Analytical results from the soil sample collected from boring GP-22 indicate the presence of total arsenic contamination at slightly elevated concentrations in shallow soils ranging from 0.6 to 1.2 meter (2 to 4 feet) below grade. The contamination detected exceeds the Residential and Commercial/Industrial DEC.

AOEC #5: Borings GP-27, GP-29, GP-30, & GP-32: 1461-1475 Boston Post Rd.

Analytical results from the soil samples collected from borings GP-27, GP-30, and GP-32 indicate the presence of semi-volatile organic compound (PAH) contamination at slightly elevated concentrations in shallow soils ranging from 0 to 0.6 meter (0 to 2 feet) below grade. The contamination detected exceeds the GB PMC, and Residential and Commercial/Industrial DEC. Analytical results from the soil samples collected from boring GP-29 indicate the presence of total arsenic contamination at a slightly elevated concentration in soil ranging from 1.2 - 2.4 meters (4 to 8 feet) below grade. The contamination detected exceeds the Residential and Commercial/Industrial DEC.

AOEC #6: Borings GP-37, GP-38, GP-40, GP-41, GP-42, and GP-43: 1553-1607 Boston Post Road

Analytical results from the soil samples collected from borings GP-38, GP-41, and GP-42 indicate the presence of semi-volatile organic compound (PAH) contamination at slightly elevated concentrations in shallow soils ranging from 0 to 0.6 meters (0 to 2 feet) below grade. The contamination detected exceeds the GB PMC, and Residential and Commercial/Industrial DEC. In addition, the soil samples from GP-37, GP-40, GP-41, GP-42, and GP-43 also contained total arsenic at slightly elevated concentrations in shallow soils ranging from 0 to 0.6 meters (0 to 2 feet) below grade. The contamination detected exceeds the Residential and Commercial/Industrial DEC.

AOEC #7: Borings GP-46, GP-47, GP-48, GP-50, GP-52, & GP-53: 1755-1777 Boston Post Road

Analytical results from the soil samples collected from borings GP-46, GP-47, GP-48, GP-52, and GP-53 indicate the presence of semi-volatile organic compound (PAH) contamination at slightly elevated concentrations in shallow soils ranging from 0 to 1.2 meters (0 to 4 feet) below grade. Total arsenic was detected at slightly elevated concentrations in soil ranging from 0 to 1.2 meters (0 to 4 feet) below grade in the samples collected from GP-46, GP-47, GP-50, GP-52, and GP-53. The contamination detected exceeds the Residential and Commercial/Industrial DEC.

7.0 **RECOMMENDATIONS**

The results of the Task 210 – Surficial Site Investigation for the Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line in Milford, Connecticut indicate the presence of semi-volatile (PAH) and total arsenic contamination in soils throughout the project corridor ranging from 0 to 2.4 meters (0 to 8 feet) below grade, at concentrations that slightly to moderately exceed the applicable RSR criteria. Seven Areas of Environmental Concern (AOEC) have been identified within the project corridor. Special considerations for treatment/disposal and worker health and safety must be given to these areas in order to ensure compliance with all local, State and Federal laws. A Task 310 Remedial Management Plan is therefore recommended for all areas of construction associated with the Reconstruction of Route 1 from Roses Mill Road to the Orange Town Line project.

8.0 LIMITATIONS

All work product and reports provided by Maguire Group Inc. (MGI) in connection with the performance of this Task 210 - Surficial Site Investigation are subject to the following limitations:

- The observations described in this report were made under the conditions stated therein.
 The conclusions presented in the report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services provided to ConnDOT.
- 2. In preparing this report, MGI has relied on certain information provided by State and local officials and information and representations made by other parties referenced therein, and on information contained in the files of State and/or local agencies made available to MGI at the time of this investigation. To the extent that such files are missing, incomplete or not provided to MGI, MGI is not responsible. Although there may have been some degree of overlap in the information provided by these various sources, MGI did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this investigation.
- 3. The conclusions and recommendations contained in this report are based in part upon the data from subsurface explorations. The nature and extent of variations between these explorations may not become evident until further explorations are completed. If variations or other latent conditions become evident, it will be necessary to re-evaluate the conclusions and recommendations of this report.
- 4. The water level readings made for this investigation were made at the times and conditions stated on the boring logs. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, passage of time and other factors.

Should additional data become available in the future, these data should be reviewed by MGI, and the conclusions and recommendations presented herein modified accordingly.

- 5. Where quantitative laboratory analyses have been conducted by an outside certified laboratory, MGI has relied upon the data provided, and has not conducted an independent evaluation of the reliability of these tests.
- 6. If the conclusions and recommendations contained in this report are based, in part, upon various types of chemical data then the conclusions and recommendations are contingent upon the validity of such data. These data have been reviewed and interpretations made in the report. It should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, these data should be reviewed by MGI and the conclusions and recommendations presented herein modified accordingly.
- 7. Chemical analyses were performed for specific parameters during the course of this investigation, as described in the text. However, it should be noted that testing for all known chemical constituents was not performed. The conclusions and recommendations contained in this report are based only upon the chemical constituents for which testing was accomplished.

The following qualifications apply to the undersigned's opinion:

The activities described and opinions included herein are based on information gathered during this exploratory site investigation which was limited in scope in adherence to the terms of our agreement. The professional opinion provided herein is based on the information described in this report.

The information contained herein was prepared for the use of ConnDOT solely in conjunction with the task descriptions for this assignment. The conclusions and recommendations set forth in this report are based on site conditions at the time of the investigation. Future studies and findings could change the contents of this report. The professional opinions presented in this report have been developed by using that degree of care and skill ordinarily exercised, under similar circumstances, by reputable environmental engineering consultants practicing in this or similar localities. No other warranty, expressed or implied, is made as to the professional opinions included in this report.

Prepared by:

Approved by:

Reviewed by:

Cindy Knight

Logical Env. Solutions

David R. Stock, P.E.

Program Manager

Jane Witherell, P.E., L.E.P.

Project Engineer

TABLES

TABLE 1(a) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample Depth:	GP-1 0-0.6m 0'-2'	GP-2 1,2-2.4m 4'-8'	GP-3 0-0.6m 0'-2'	GP-4 0.6-1,2m 2'-4'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	BDL	BDL	62.6	BDL	2,500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb)						
Methylene Chloride	ND	ND	165	121	1,000 ppb	82,000/760,000 ppb
PAHs - EPA Method 8270 (ppm)			- · · · · · · · · · · · · · · · · · · ·			
Benzo(a)anthracene	ND	ND	1.13	ND	1 ppm	1/7.8 ppm
Benzo(a)pyrene	ND	ND	1.21	ND	1 ppm	1/1 ppm
Benzo(b)fluoranthene	ND	ND	2.11	ND	1 ppm	1/7.8 ppm
Benzo(k)fluoranthene	ND	ND	0.97	ND	1 ppm	8.4/78 ppm
Chrysene	ND	ND	1.36	ND	1 ppm	84/780 ppm
Fluoranthene	ND	ND	2.12	ND	56 ppm	1,000/2,500 ppm
Indeno(1,2,3-cd)pyrene	ND	ND	0.64	ND	1 ppm	1/7.8 ppm
Phenanthrene	ND	ND	0.68	ND	40 ppm	1,000/2,500 ppm
Pyrene	ND	ND	2.24	ND	40 ppm	1,000/2,500 ppm
Total PAHs	-	-	12.46	_		
Total RCRA 8 Metals - ppm						
Arsenic	5.91	6.02	7.86	11.4		10/10 ppm
Barium	26.6	32.4	20.2	13.8		4,700/140,000 ppm
Cadmium	0.14	0.06	0.25	0.09		34/1,000 ppm
Chromium	15.4	13.8	12.2	25.1		100/100 ppm
Lead	31.0	6.44	24.2	7.33		500/1,000 ppm
Mercury	0.016	ND	0.011	BDL		20/610 ppm
Selenium	5.44	BDL	ND	6.64		340/10,000 ppm
SPLP RCRA 8 Metals - ppm				0.00	10.0	
Barium	0.15	0.35	0.25	0.08	10.0 ppm	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

TABLE 1(b) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample Depth:	GP-5 0-0.6m 0'-2"	GP-6 0,6-1,2m 2'-4'	GP-7 1,2-2m 4'-6.5'	GP-8 0-0.6m 0'-2'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	349	BDL	BDL	160	2,500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb) Methylene Chloride	182	106	ND	159	1,000 ppb	82,000/760,000 ppb
PAHs - EPA Method 8270 (ppm)						
Benzo(a)anthracene	ND	BDL	ND	1.95	1 ppm	1/7.8 ppm
Benzo(b)fluoranthene	ND	ND	ND	3.57	1 ppm	1/7.8 ppm
Fluoranthene	BDL	0.45	ND	4.33	56 ppm	1,000/2,500 ppm
Phenanthrene	ND	BDL	ND	1.82	40 ppm	1,000/2,500 ppm
Total PAHs	-	0.45	-	11.67		
Total RCRA 8 Metals - ppm						
Arsenic	6.5	ND	6.25	ND		10/10 ppm
Barium	31.3	11.0	14.3	36.6		4,700/140,000 ppm
Cadmium	0.16	0.1	ND	0.64		34/1,000 ppm
Chromium	24.6	9.35	15.2	14.7		100/100 ppm
Lead	16.7	4.2	4.94	121		500/1,000 ppm
Mercury	ND	ND	ND	0.057		20/610 ppm
Selenium	ND	ND _	5.32	7.78		340/10,000 ppm
SPLP RCRA 8 Metals - ppm						
Barium	0.05	0.08	0.12	0.2	10.0 ppm	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

TABLE 1(c) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample Depth:	GP-9 0.6-1.2m 2'-4'	GP-10 0-0.6m 0'-2'	GP-11 0-0.6m 0'-2'	GP-12 0-0.6m 0'-2'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/ Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	BDL	20.8	50.8	109	2,500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb)						
Methylene Chloride	157	209	168	248	1,000 ppb	82,000/760,000 ppb
PAHs - EPA Method 8270 (ppm)						
Benzo(a)anthracene	ND	0.56	0.9	3.57	1 ppm	1/7.8 ppm
Benzo(a)pyrene	ND	BDL	0.95	3.82	1 ppm	1/1 ppm
Benzo(b)fluoranthene	ND	0.83	1.33	5.87	1 ppm	1/7.8 ppm
Benzo(k)fluoranthene	ND	BDL	0.99	4.05	1 ppm	8.4/78 ppm
Chrysene	ND	0.72	1.07	4.22	1 ppm	84/780 ppm
Fluoranthene	ND	1.19	1.85	7.15	56 ppm	1,000/2,500 ppm
Indeno(1,2,3-cd)pyrene	ND	BDL	0.48	1.98	1 ppm	1/7.8 ppm
Phenanthrene	ND	0.74	0.96	3.72	40 ppm	1,000/2,500 ppm
Pyrene	ND	1.2	1.86	7.87	40 ppm	1,000/2,500 ppm
Total PAHs	-	5.24	10.39	42.25		
Total RCRA 8 Metals – ppm						
Arsenic	BDL	9.72	7.84	6.98		10/10 ppm
Barium /	13.7	33.6	33.8	42.3		4,700/140,000 ppm
Cadmium	ND	0.08	0.24	0.34		34/1,000 ppm
Chromium	20.8	20.1	16.2	17.4		100/100 ppm 500/1,000 ppm
Lead	5.81	18.4	91.0	138		20/610 ppm
Mercury	ND	0.019	0.033	0.053		20/010 ppm
SPLP RCRA 8 Metals - ppm		0.10	0.13	0.24	100	
Barium	0.1	0.12	0.12	0.34 0.1	10.0 ppm 0.15 ppm	
Lead	ND	ND	ND	0.1	ម.រ.១ ១៣	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

TABLE 1(d) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample Depth:	GP-13 0-0.6m 0'-2'	GP-14 0.6-1,2m 2'-4'	GP-15 0-0.6m 0'-2'	GP-16 0-0.6m 0'-2'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	77.5	BDL	43.5	178	2,500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb)						
Methylene Chloride	148	174	208	ND	1,000 ppb	82,000/760,000 ppb
PAHs - EPA Method 8270 (ppm)						arthur (1)
Acenaphthylene	0.33	ND	ND	ND	84 ppm	1,000/2,500 ppm
Benzo(a)anthracene	1.12	ND	0.35	ND	1 ppm	1/7.8 ppm
Benzo(a)pyrene	1.37	ND	BDL	ND	1 ppm	1/1 ppm
Benzo(b)fluoranthene	2.07	ND	0.57	ND	1 ppm	1/7.8 ppm
Benzo(k)fluoranthene	1.33	ND	BDL	ND	1 ppm	8.4/78 ppm
Chrysene	1.2	BDL	BDL	ND	1 ppm	84/780 ppm
Fluoranthene	1.77	BDL	0.68	ND	56 ppm	1,000/2,500 ppm
Indeno(1,2,3-cd)pyrene	0.6	ND	BDL	ND	1 ppm	1/7.8 ppm
Phenanthrene	0.6	ND	BDL	ND	40 ppm	1,000/2,500 ppm
Pyrene	2.13	BDL	BDL	BDL	40 ppm	1,000/2,500 ppm
Total PAHs	12.52	-	1.6	-		
Total RCRA 8 Metals – ppm						
Arsenic	9.44	ND	BDL	ND		10/10 ppm
Barium	46.8	14.0	21.1	15.3	The second se	4,700/140,000 ppm
Cadmium	0.34	0.09	0.12	ND		34/1,000 ppm
Chromium	20.1	9.53	12.0	4.86		100/100 ppm
Lead	122	11.6	64.8	7.03		500/1,000 ppm
Mercury	0.034	ND	0.011	ND		20/610 ppm
Selenium	8.21	ND	ND	ND		340/10,000 ppm
SPLP RCRA 8 Metals - ppm						
Barium	0.11	0.13	0.07	0.08	10.0 ppm	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

TABLE 1(e) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample Depth:	GP-17 0-0.6m 0'-2'	GP-18 0.6-1.2m 2'-4'	GP-19 0-0.6m 0'-2'	GP-20 0-0.6m 0'-2'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	88.7	BDL	BDL	72.4	2,500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb)	ND	ND	ND	ND		
PAHs - EPA Method 8270 (ppm)						
Anthracene	0.39	ND	ND	ND	400 ppm	1,000/2,500 ppm
Benzo(a)anthracene	2.78	ND	ND	ND	1 ppm	1/7.8 ppm
Benzo(a)pyrene	2.45	ND	ND	ND	1 ppm	1/1 ppm
Benzo(b)fluoranthene	3.58	ND	ND	ND	1 ppm	1/7.8 ppm
Benzo(k)fluoranthene	2.23	ND	ND	ND	1 ppm	8.4/78 ppm
Chrysene	2.6	ND	ND	ND	1 ppm	84/780 ppm
Fluoranthene	3.89	ND	ND	ND	56 ppm	1,000/2,500 ppm
Indeno(1,2,3-cd)pyrene	1.0	ND	ND	ND	1 ppm	1/7.8 ppm
Phenanthrene	1.34	ND	ND	ND	40 ppm	1,000/2,500 ppm
Pyrene	5.44	ND	ND	ND	40 ppm	1,000/2,500 ppm
Total PAHs	25.7	-	-	-		
Total RCRA 8 Metals - ppm						7,500/440,000
Barium	14.4	20.6	42.2	28.0		4,700/140,000 ppm
Cadmium	0.1	0.06	0.14	0.19		34/1,000 ppm
Chromium	4.66	4.66	14.8	11.7		100/100 ppm 500/1,000 ppm
Lead	4.99	2.96	21.8	15.3		20/610 ppm
Mercury	ND	ND	0.013	0.019		20/010 ppm
SPLP RCRA 8 Metals - ppm	0.12	0.09	0.29	0.13	10.0 ppm	
Barium	0.13	0.09	0.29	0.13	lo.o ppm	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

TABLE 1(f) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample Depth:	GP-21 1.2-2.1m 4'-7'	GP-22 0.6-1.2m 2'-4'	GP-23 0-0.6m 0'-2'	GP-24 1.2-2.4m 4'-8'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	BDL	BDL	200	BDL	2,500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb)	ND	ND	ND	ND		
PAHs - EPA Method 8270 (ppm)						
Acenaphthylene	ND	ND	0.37	ND	84 ppm	1,000/2,500 ppm
Benzo(a)anthracene	ND	ND	0.47	ND	1 ppm	1/7.8 ppm
Benzo(a)pyrene	ND	ND	0.69	ND	1 ppm	1/1 ppm
Benzo(b)fluoranthene	ND	ND	0.83	ND	1 ppm	1/7.8 ppm
Chrysene	ND	ND	0.86	ND	1 ppm	84/780 ppm
Fluoranthene	ND	ND	1.07	ND	56 ppm	1,000/2,500 ppm
Indeno(1,2,3-cd)pyrene	ND	ND	0.51	ND	1 ppm	1/7.8 ppm
Phenanthrene	ND	ND	0.46	ND	40 ppm	1,000/2,500 ppm
Pyrene	ND	ND	1.05	ND	40 ppm	1,000/2,500 ppm
Total PAHs	-	-	6.31	-		
Total RCRA 8 Metals - ppm						
Arsenic	ND	11.5	9.86	ND		10/10 ppm
Barium	10.4	25.8	38.7	10.1		4,700/140,000 ppm
Cadmium	0.04	ND	0.34	0.1		34/1,000 ppm
Chromium	6.08	12.6	12.6	9.7		100/100 ppm
Lead	4.74	8.44	66.0	4.66		500/1,000 ppm
Mercury	ND	0.026	0.039	0.018		20/610 ppm
SPLP RCRA 8 Metals - ppm						
Barium	0.11	0.04	0.05	0.02	10.0 ppm	1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Lead	ND	ND	0.02	ND	0.15 ppm	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

TABLE 1(g) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.; Sample Depth:	GP-25 0-0.6m 0'-2'	GP-26 0.6-1.2m 2'-4'	GP-27 0-0.6m 0'-2'	GP-28 0-0.6m 0'-2'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	BDL	BDL	67.2	33.8	2,500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb)	ND	ND	ND	ND		
PAHs - EPA Method 8270 (ppm)						
Benzo(a)anthracene	ND	ND	0.92	ND	1 ppm	1/7.8 ppm
Benzo(a)pyrene	ND	ND	1.2	ND	1 ppm	1/1 ppm
Benzo(b)fluoranthene	ND	ND	1.3	ND	1 ppm	1/7,8 ppm
Benzo(k)fluoranthene	ND	ND	1.04	ND	1 ppm	8.4/78 ppm
Chrysene	ND	ND	1.4	ND	1 ppm	84/780 ppm
Fluoranthene	ND	ND	1.87	ND	56 ppm	1,000/2,500 ppm
Indeno(1,2,3-cd)pyrene	ND	ND	0.81	ND	1 ppm	1/7.8 ppm
Phenanthrene	ND	ND	0.82	ND	4 ppm	1,000/2,500 ppm
Pyrene	ND	ND	1.82	ND	40 ppm	1,000/2,500 ppm
Total PAHs	-	-	11.18	-	THE STATE OF THE S	
Total RCRA 8 Metals - ppm			-			
Arsenic	8.99	BDL	7.86	7.39		10/10 ppm
Barium	16.5	10.1	31.8	15.8		4,700/140,000 ppm
Cadmium	0.04	0.08	0.29	0.1		34/1,000 ppm
Chromium	20.7	7.28	10.8	11.6		100/100 ppm
Lead	7.8	6.49	149	47.8		500/1,000 ppm
Mercury	0.043	ND	0.018	0.02		20/610 ppm
SPLP RCRA 8 Metals - ppm						
Barium	0.04	0.02	0.04	0.02	10.0 ppm	Tax Time
Lead	ND	ND	0.03	0.02	0.15 ppm	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

TABLE 1(h) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample Depth:	GP-29 1.2-2.4m 4'-8'	GP-30 0-0.6m 0'-2'	GP-31 0-0.6m 0'-2'	GP-32 0-0.6m 0'-2'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	BDL	390	88.2	254	2,500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb)	ND	ND	ND	ND		
PAHs - EPA Method 8270 (ppm)						
Acenaphthylene	ND	2.22	ND	BDL	84 ppm	1,000/2,500 ppm
Benzo(a)anthracene	0.34	5.47	0.6	2.93	1 ppm	1/7.8 ppm
Benzo(a)pyrene	BDL	6.52	0.73	BDL	1 ppm	1/1 ppm
Benzo(b)fluoranthene	0.54	8.48	0.83	3.04	1 ppm	1/7.8 ppm
Benzo(k)fluoranthene	BDL	4.32	0.75	BDL	1 ppm	8.4/78 ppm
Chrysene	BDL	8.08	0.92	4.5	1 ppm	84/780 ppm
Fluoranthene	0.76	11.7	1.4	6.76	56 ppm	1,000/2,500 ppm
		5.09	0.55	1.87	1 ppm	1/7.8 ppm
Indeno(1,2,3-cd)pyrene	0.33					
Phenanthrene	BDL	6.37	0.67	3.5	40 ppm	1,000/2,500 ppm
Pyrene	BDL	10.5	1.21	6.0	40 ppm	1,000/2,500 ppm
Total PAHs	1.97	68.75	7.66	28.6		
Total RCRA 8 Metals - ppm						
Arsenic	11.4	7.23	BDL	8.53		10/10 ppm
Barium	18.3	34.6	30.4	30.5		4,700/140,000 ppm
Cadmium	ND	0.45	0.28	0.24		34/1,000 ppm
Chromium	12.5	6.06	10.3	7.64		100/100 ppm
Lead	8.64	557	73.3	111 0.047		500 /1,000 ppm 20/610 ppm
Mercury	0.022	0.072	0.019	0.04/		Zoro to ppiii
SPLP RCRA 8 Metals - ppm	0.02	0.07	0.06	0.08	10.0 ppm	
Barium	0.03 ND	0.07 0.07	BDL	0.08	0.15 ppm	
Lead	ND	0.07	DDL	0.02	թ. 1.5 թթու	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

TABLE 1(i) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample-Depth:	GP-33 0.6-1.2m 2'-4'	GP-34 0-0.6m 0'-2'	GP-35 0-0.6m 0'-2'	GP-36 0.6-1.2m 2'-4'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/ Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	364	219	32.8	BDL	2,500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb)	ND	ND	ND	ND		
PAHs - EPA Method 8270 (ppm)						
Benzo(a)anthracene	0.42	0.46	BDL	ND	1 ppm	1/7.8 ppm
Benzo(b)fluoranthene	0.7	0.59	0.43	ND	1 ppm	1/7.8 ppm
Fluoranthene	0.7	0.96	0.48	ND	56 ppm	1,000/2,500 ppm
Indeno(1,2,3-cd)pyrene	0.36	0.34	0.34	ND	1 ppm	1/7.8 ppm
Phenanthrene	BDL	0.49	ND	ND	40 ppm	1,000/2,500 ppm
Total PAHs	2.18	2.84	1.25	_		
Total RCRA 8 Metals - ppm						
Arsenic	9.75	9.82	5.53	6.4		10/10 ppm
Barium	31.2	30.9	15.4	8.24		4,700/140,000 ppm
Cadmium	0.19	0.2	0.16	0.08		34/1,000 ppm
Chromium	10.6	10.9	12.1	11.0		100/100 ppm
Lead	39.5	40.2	23.5	6.04		500/1,000 ppm
Mercury	0.033	0.048	ND	BDL		20/610 ppm
SPLP RCRA 8 Metals - ppm						
Barium	0.09	0.08	0.07	0.02	10.0 ppm	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

TABLE 1(j) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample Depth:	GP-37 1.2-2.4m 4'-8'	GP-38 0+0.6m 0'-2'	GP-39 0-0.6m 0'-2'	GP-40 0-0.6m 0'-2'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/ Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	BDL	95.2	246	26.6	2,500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb)						
Acetone	ND	ND	299	ND	140,000 ppb	500,000/1,000,000 ppb
Methylene Chloride	ND	76	ND	ND	1,000 ppb	82,000/760,000 ppb
PAHs - EPA Method 8270 (ppm)						
Acenaphthylene	ND	2.69	ND	ND	84 ppm	1,000/2,500 ppm
Benzo(a)anthracene	ND	4.83	ND	ND	1 ppm	1/7.8 ppm
Benzo(a)pyrene	ND	5.91	BDL	ND	1 ppm	1/1 ppm
Benzo(b)fluoranthene	ND	6 .77	BDL	ND	1 ppm	1/7.8 ppm
Benzo(k)fluoranthene	ND	3.6	ND	ND	1 ppm	8.4/78 ppm
Chrysene	ND	6.9	BDL	ND	1 ppm	84/780 ppm
Fluoranthene	ND	8.75	BDL	ND	56 ppm	1,000/2,500 ppm
Indeno(1,2,3-cd)pyrene	ND	4.27	ND	ND	1 ppm	1/7.8 ppm
Phenanthrene	ND	4.98	ND	ND	40 ppm	1,000/2,500 ppm
Pyrene	ND	9.41	ND	ND	40 ppm	1,000/2,500 ppm
Total PAHs	-	58.11	-	-		200 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Total RCRA 8 Metals - ppm						
Arsenic	10.9	7.63	9.36	12.0		10/10 ppm
Barium	26.8	41.6	33.5	40.2		4,700/140,000 ppm
Cadmium	0.07	0.63	0.17	ND 15.2		34/1,000 ppm 100/100 ppm
Chromium	11.2	12.8 322	15.6 23.4	15.2 16.6		500/1,000 ppm
Lead	10.8 0.029	0.042	0.021	0.025		20/610 ppm
Mercury	0.029	0.042	0.021	0.023		20/010 ppm
SPLP RCRA 8 Metals - ppm	0.03	0.04	0.04	0.04	10.0 ppm	
Barium Lead	0.03 ND	0.04	BDL	ND	0.15 ppm	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

TABLE 1(k) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample Depth:	GP-41 0-0.6m 0'-2'	GP-42 0-0.6m 0'-2'	GP-43 0-0.6m 0'-2'	GP-44 0-0.6m 0'-2'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/ Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	21.4	40.9	52.4	76.7	2,500 ppm	500 /2,500 ppm
VOCs - EPA Method 8260 (ppb)	ND	ND	ND	ND		
PAHs - EPA Method 8270 (ppm)						
Anthracene	BDL	0.36	ND	BDL	400 ppm	1,000/2,500 ppm
Benzo(a)anthracene	1.1	1.22	0.61	0.53	1 ppm	1/7.8 ppm
Benzo(a)pyrene	1.16	1.36	0.69	BDL	1 ppm	1/1 ppm
Benzo(b)fluoranthene	1.29	1.5	0.83	0.7	1 ppm	1/7.8 ppm
Benzo(k)fluoranthene	0.82	1.01	BDL	BDL	1 ppm	8.4/78 ppm
Chrysene	1.39	1.55	0.95	0.76	1 ppm	84/780 ppm
Fluoranthene	2.1	2.44	1.51	1.28	56 ppm	1,000/2,500 ppm
Indeno(1,2,3-cd)pyrene	0.73	0.9	0.49	0.42	1 ppm	1/7.8 ppm
Phenanthrene	0.88	1.38	1.11	0.73	40 ppm	1,000/2,500 ppm
Pyrene	2.04	2.38	1.48	1.1	40 ppm	1,000/2,500 ppm
Total PAHs	11.51	14.1	7.67	5.52		A CONTRACTOR OF THE PROPERTY O
Total RCRA 8 Metals - ppm			,			
Arsenic	11.2	11.2	12.1	9.86		10/10 ppm
Barium	34.3	29.2	27.5	31.1		4,700/140,000 ppm
Cadmium	0.21	0.13	0.19	0.08		34/1,000 ppm
Chromium	12.4	19.4	12.1	9.84		100/100 ppm
Lead	52.2	53.0	47.2	9.52		500/1,000 ppm
Mercury	0.027	0.038	0.021	0.048		20/610 ppm
SPLP RCRA 8 Metals - ppm						
Barium	0.05	0.05	0.06	0.05	10.0 ppm	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

TABLE 1(1) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample Depth:	GP-45 0-0.6m 0'+2'	GP-46 0-0.6m 0'+2'	GP-47 0.6-1.2m 2'-4'	GP-48 0-0.6m 0'-2'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/ Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	BDL	104	25.0	76.0	500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb)						
Acetone	ND	ND	993	ND	140,000 ppb	500,000/1,000,000 ppb
Methylene Chloride	ND	ND	130	ND	1,000 ppb	82,000/760,000 ppb
PAHs - EPA Method 8270 (ppm)				· · · · · · · · · · · · · · · · · · ·		
Acenaphthylene	ND	BDL	3.43	BDL	84 ppm	1,000/2,500 ppm
Anthracene	ND	BDL	4.8	BDL	400 ppm	1,000/2,500 ppm
Benzo(a)anthracene	ND	1.51	13.4	1.23	1 ppm	1/7.8 ppm
Benzo(a)pyrene	ND	1.9	11.4	1.4	1 ppm	1/1 ppm
Benzo(b)fluoranthene	ND	2.39	14.4	1.71	1 ppm	1/7.8 ppm
Benzo(k)fluoranthene	ND	1.97	14.4	1.38	1 ppm	8.4 /78 ppm
Chrysene	ND	2.34	16.4	1.74	1 ppm	84/780 ppm
*	ND	3.42	27.8	2.15	56 ppm	1,000/2,500 ppm
Fluoranthene			6.44	0.95	1 ppm	1/7.8 ppm
Indeno(1,2,3-cd)pyrene	ND	1.52			177	27
Phenanthrene	ND	1.6	15.8	0.87	40 ppm	1,000/2,500 ppm
Pyrene	ND	3.29	24.4	2.04	40 ppm	1,000/2,500 ppm
Total PAHs		19.94	152.67	13.47		
Total RCRA 8 Metals - ppm						10/30
Arsenic	9.8	11.8	14.4	5.3		10/10 ppm
Barium	20.2	24.1	43.5	36.2 0.31		4,700/140,000 ppm 34/1,000 ppm
Cadmium	0.08	0.27	0.04 24.2	16.3		100/100 ppm
Chromium	19.3	14.7 102	24.2	16.3		500/1,000 ppm
Lead	10.4 BDL	0.032	0.033	0.041		20/610 ppm
Mercury	BDL	0.032	0.033	0.041		Avioto Phin
SPLP RCRA 8 Metals - ppm	0.06	0.06	0.08	0.06	10.0 ppm	
Barium	1	1				
Lead	ND	0.03	ND	0.05	0.15 ppm	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

The compounds listed above are those that were detected - please see laboratory reports for full lists of compounds and their specific detection limits.

TABLE 1(m) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample Depth:	GP-49 0.6-1.2m 2'-4'	GP-50 0-0.6m 0'-2'	GP-51 0-0.6m 0'-2'	GP-52 0.6-1.2m 2'-4'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/ Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	BDL	31.4	29.2	33.0	2,500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb)						
Acetone	571	ND	ND	250	140,000 ppb	500,000/1,000,000 ppb
PAHs - EPA Method 8270 (ppm)						
Acenaphthylene	ND	ND	ND	0.38	84 ppm	1,000/2,500 ppm
Benzo(a)anthracene	ND	BDL	0.47	1.07	1 ppm	1/7.8 ppm
Benzo(a)pyrene	ND	BDL	BDL	1.22	1 ppm	1/1 ppm
Benzo(b)fluoranthene	ND	0.41	0.62	1.41	1 ppm	1/7.8 ppm
Benzo(k)fluoranthene	ND	BDL	BDL	1.41	1 ppm	8.4/78 ppm
Chrysene	ND	BDL	0.69	1.41	1 ppm	84/780 ppm
Fluoranthene	ND	0.71	1.04	1.94	56 ppm	1,000/2,500 ppm
Indeno(1,2,3-cd)pyrene	ND	BDL	0.34	0.71	1 ppm	1/7.8 ppm
Phenanthrene	ND	BDL	0.6	1.06	40 ppm	1,000/2,500 ppm
Pyrene	ND	BDL	1.05	2.05	40 ppm	1,000/2,500 ppm
Total PAHs	-	1.12	4.81	12.66		
Total RCRA 8 Metals - ppm						
Arsenic	6.2	12.2	8.72	13.0		10/10 ppm
Barium	11.8	26.8	20.5	25.1		4,700/140,000 ppm
Cadmium	0.06	0.15	0.12	0.13		34/1,000 ppm
Chromium	12.5	13.0	15.0	11.6		100/100 ppm
Lead	6.34	36.0	45.0	40.5		500/1,000 ppm
Mercury	BDL	0.044	0.02	0.025		20/610 ppm
SPLP RCRA 8 Metals - ppm					100	
Barium	0.04	0.06	0.05	0.07	10.0 ppm	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

The compounds listed above are those that were detected - please see laboratory reports for full lists of compounds and their specific detection limits.

TABLE 1(n) - Results of Geoprobe Boring Soil Sample Analyses Reconstruction of Route 1 (Boston Post Road) from Roses Mill Road to the Orange Town Line Milford, Connecticut

Boring I.D.: Sample Depth:	GP-53 0-0.6m 0'-2'	CTDEP Pollutant Mobility Criteria – GB Groundwater Area	CTDEP Direct Exposure Criteria Residential/ Commercial & Industrial
TPH - EPA Method 418.1 (ppm)	33.3	2,500 ppm	500/2,500 ppm
VOCs - EPA Method 8260 (ppb)	ND		
PAHs - EPA Method 8270 (ppm)			
Benzo(a)anthracene	0.77	1 ppm	1/7.8 ppm
Benzo(a)pyrene	0.93	1 ppm	1/1 ppm
Benzo(b)fluoranthene	1.03	1 ppm	1/7.8 ppm
Benzo(k)fluoranthene	0.7	1 ppm	8.4/78 ppm
Chrysene	1.09	1 ppm	84/780 ppm
Fluoranthene	1.58	56 ppm	1,000/2,500 ppm
Indeno(1,2,3-cd)pyrene	0.54	1 ppm	1/7.8 ppm
Phenanthrene	0.84	40 ppm	1,000/2,500 ppm
Pyrene	1.56	40 ppm	1,000/2,500 ppm
Total PAHs	9.04		70 July 1 10 10 10 10 10 10 10 10 10 10 10 10 1
Total RCRA 8 Metals - ppm			
Arsenic	15.2		10/10 ppm
Barium	32.6		4,700/140,000 ppm
Cadmium	0.23		34/1,000 ppm
Chromium	13.6		100/100 ppm
Lead	34.0		500/1,000 ppm 20/610 ppm
Mercury	0.043		20/010 ppm
SPLP RCRA 8 Metals - ppm	0.07	10.0	
Barium	0.07	10.0 ppm	

BDL - Below Detectable Limits (see laboratory reports for compound specific detection limits)

The compounds listed above are those that were detected - please see laboratory reports for full lists of compounds and their specific detection limits.

APPENDIX A Boring Logs

Date Started: 12/13/99		ed: 12/13/99	Logical Environmental Solut	Boring No.: GP-1	
Date	Finisl	Geoprobe Boring Log			Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements	d, CT	Inspector: Cindy Knight
_ De	pth.	Descriptio	n		Comments
m			- 13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Co	re Sample 0 - 0.6m (0' - 2'):
0.3	1'			1	PID = 0.3 ppm
0.6	2' —	Brown fine	e to medium SAND, little fine to coarse Gravel & Cobble, trace Silt		
0.9	3'-				re Sample 0.6 - 1.2m (2' - 4'): PID = 1.4 ppm
1.2	4' -				
1.5	5'			Macro Co	re Sample 1.2 - 2.4m (4' - 8'):
	-			I	PID = 0 ppm
1.8	6'				
2.1	7'-	•			
	-	Dark-Brov	wn Organic SILT		
2.4	8' —				re Sample 2.4 - 3.4m (8' - 11'):
2.74	9' —			l	PID = 0 ppm
3	10'—				
3.4	11-				
3.4	11'-				
3.7	12'-				
4	13'-	Refusal a	t 3.4 m (11') on Bluish-Green Phyllite		
4.3	14'-				
4.6	15'—				
4.9	16'—				
m Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20	-35%	And = 35-50%

Date Started: 12		ed: 12/13/99	Logical Environmental Solutions		Boring No.: GP-2
Date	Date Finished: 12/13/99		Geoprobe Boring Log	Client: Maguire Group Inc.	
Drille	er: Way	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements	d, CT	Inspector: Cindy Knight
De	oth ft_	Descriptio	on		Comments
••••		TOPSOIL	13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'			i	PID = 0.3 ppm
Ų.J					
0.6	2'-	Brown fine	e to medium SAND, little fine to coarse Gravel & Cobble, trace Silt		
	-			Macro Co	re Sample 0.6 - 1.2m (2' - 4'):
0.9	3'-			•	
					PID = 0.2 ppm
1.2	4'			- -	
1.5	5'—			Macro Co	re Sample 1.2 - 2.4m (4' - 8'):
1.0					PID = 0.9 ppm
				'	0.0 pp///
1.8	6'-				
2.1	7'				
		Dark-Bro	wn Organic SILT		
2.4	8' —			Macro Co	re Sample 2.4 - 3.4m (8' - 11'):
				1	PID = 0 ppm
2.74	9' 🗕				• •
3	10				
3.4	11'-				
3.7	12				
4	13				
•		Refusal a	at 3.4 m (11') on Bluish-Green Phyllite		
4.3	14'-				
T.J	'"]				
4.6	15.				
4.0					
4.9	16'—				
m Soil	Desc	ription Explanation	Trace = 0-10% Little = 10-20% Some = 20	-35%	And = 35-50%

Date Started: 12/13/99 Date Finished: 12/13/99		ed: 12/13/99	Logical Environmental Solutions		Boring No.: GP-3
		12/13/99	Geoprobe Boring Log	Client: Maguire Group Inc.	
Drille	r: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements	d, CT	Inspector: Cindy Knight
De _l	ρth ft	Descriptio	n		Comments
		TOPSOIL	- 13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	e Sample 0 - 0.6m (0' - 2'):
					PID = 0.5 ppm
0.3	1'-			ŗ	-1D = 0.5 ppm
	-				
0.6	2'				
	_	Brown fine	e to medium SAND, little fine to coarse Gravel, trace Silt		
0.9	3,	Diowii iiic	o in calain of the final to source cravely trace on	Macro Co	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3'			ſ	PID = 0.1 ppm
	ΙŢ				
1.2	4'—				
	1 -			Maara Car	Commis 1 2
1.5	5'-				re Sample 1.2 - 1.5 m (4' - 5'):
				ŀ	PID = 0 ppm
1.8	6'-				
1.0	ľ				
	Π				
2.1	7'-	Refusal at	t 1.5 m (5') on Bluish-Green Phyllite		
2.4	8'-				
2.74	9' -				
2	10'				
3	10'-				
3.4	114				
	-				
3.7	12'-				
4	13 <u>'</u>				
4.3	14				
4.6	15'—				
4.9	16'—				
			•		
m	ft				
انمې	Docc	rintion Explanation	Trace = 0-10% Little = 10-20% Some = 20-	-35%	And = 35-50%

2.10

Date Started: 12/13/99 Date Finished: 12/13/99		ed: 12/13/99	Logical Environmental Solu	Boring No.: GP-4	
		ned: 12/13/99	Geoprobe Boring Log	Client: Maguire Group Inc.	
Drille	r: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Mil Route 1 Improvements		Inspector: Cindy Knight
De	oth ft	Description			Comments
		TOPSOIL	13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
					PID = 0.3 ppm
0.3	1'-			'	15 - 0.0 ppm
0.6	2'—				
0.0	()		Canal State Canal State		
	∣┪	Brown fin	e to medium SAND, little fine to coarse Gravel, trace Silt	Macro Co	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3'			1	PID = 0.6 ppm
	∣⊢			'	FF
1.2	4'				
				Macro Co	re Sample 1.2 - 1.5 m (4' - 5'):
1.5	5'-		-		PID = 0 ppm
	∣⊢				e.
1.8	6'-				
2.1	7'-				
۷.۱	′	Refusal	at 1.5 m (5') on Bluish-Green Phyllite		
	╽┤				
2.4	8'-				
	│ ┤				
2.74	9' _				
	$\lfloor $				
3	10'-				
3.4	114				
3.7	12-				
J.1	'^				
	╽╡				
4	13 '-				
	4				
4.3	14				
4.6	15'				
	-				
4.9	16'—				
m	ft		<u> </u>		
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some =	20-35%	And = 35-50%

Date	Starte	ed: 12/13/99	Logical Environmenta	I Solutions Boring No.: GP-5
Date	Finish	12/13/99	Geoprobe Borin	g Log Maguire Group Inc.
Drille	er: Wa	yne Lineberry	Project Location:Task 210 Surficial Site Investi Route 1 Improvemer	gation - Milford, CT Inspector: ts Cindy Knight
n De	pth ft	Descriptio		Comments
		TOPSOIL	- 10 cm (4") - Dark Brown SILT, trace fine Sand & fi	me Gravel Macro Core Sample 0 - 0.6m (0' - 2'):
0.3	1'-			PID = 0 ppm
0.6	2'	Brown fine	to medium SAND, little fine to coarse Gravel & Cob	
				Macro Core Sample 0.6 - 1.2m (2' - 4'):
0.9	3'-			PID = 0 ppm
1.2	_{4'}			
1.5	5'-			
		End of Bo	ing at 1.2 meters (4')	
1.8	6'-			
	$\mid \dashv$			
2.1	7'-		1	
2.4	8' 🗍			
2.74	9' —			
3	10'			
3.4	11'-			
3.7				
4	13'-			
•				
1.3	14'-			
	-			
4.6	15'—			
4 ^				
4.9	16'			
n				
Soil	Descr	ription Explanation	Frace = 0-10% Little = 10-20%	Some = 20-35% And = 35-50%

Date Started: 12/13/99		ed: 12/13/99	Logical Environmental Solutions		Boring No.: GP-6	
Date	Date Finished: 12/13/99		Geoprobe Boring Log	Client: Maguire Group Inc.		
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements	rd, CT	Inspector: Cindy Knight	
De	oth ft	Descriptio			Comments	
<u> </u>		TOPSOIL	- 13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel		e Sample 0 - 0.6m (0' - 2'):	
0.3	1'-	Brown SIL	.T, little fine to coarse Gravel, trace fine Sand	PID = 0.3 ppm		
0.6	2'-					
				Macro Cor	re Sample 0.6 - 1.2 m (2' - 4'):	
0.9	3'-	Light-Brov	vn fine to medium SAND, trace fine Gravel		PID = 0.5 ppm	
1.2	4' —					
1.5	5' -	Light-B	rown fine SAND, little Silt	Macro Core Sample 1.2 - 1.8 m (4' - 6'): PID = 0.1 ppm		
	⊢			•	pp	
1.8	6'-					
2.1	7'-					
	l ⊢					
2.4	8' —					
	▎ᅦ	Defined	t 1.8 m (6') on Bluish-Green Phyllite			
2.74	9' —	Refusal a	(1.6 fit (6) of bluish-Green i hymic			
	-					
3	10					
	╽႕					
3.4	11'-					
3.7	12	·				
	∣ ⊢					
4	13'-					
4.3	14					
4.6	15'-					
4.9	16'—					
7.3						
_	_		No.			
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20)-35%	And = 35-50%	

Date	Start	ted: 12/13/99	Logical Environmental Soluti	ions	Boring No.: GP-7
Date	Finis	12/13/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford Route 1 Improvements	d, CT	Inspector: Cindy Knight
De _l	pth ft	Description	n		Comments
		TOPSOIL	- 13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'— —	Brown SIL	T, little fine to coarse Gravel, trace fine Sand	F	PID = 0.4 ppm
0.6	2'-		,		
0.9	3'-	Light-Brow	wn fine to medium SAND, trace fine Gravel		re Sample 0.6 - 1.2 m (2' - 4'): PID = 0.5 ppm
1.2	4' —			Macro Col	re Sample 1.2 - 2 m (4' - 6.5'):
	5' — — 6' —	Light-Brov	wn fine SAND, little Silt		PID = 0.6 ppm
1.0	 				
2.1	7'—				
2.4	8'	Refusal a	t 2 m (6.5') on Bluish-Green Phyllite		
2.74	9' _				
_	-				
3	10-				
3.4	11'-				
3.7	12'-				
4	13 <u>'</u>				
	-				
4.3	14'				
4.6	15'-				
4.9	16'—				
n Soil	ff_ Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20-	35%	And = 35-50%

Date Started: 12/13/99 Date Finished: 12/13/99		ed: 12/13/99	Logical Environmental Solut	ions	Boring No.: GP-8
			Geoprobe Boring Log	Client: Maguire Group Inc.	
Driller: Wayne Lineberry			Project Location: Task 210 Surficial Site Investigation - Milfo Route 1 Improvements	rd, CT	Inspector: Cindy Knight
De	pth	Descriptio	n		Comments
n			- 13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Co	re Sample 0 - 0.6m (0' - 2'):
0.3	1'-	Brown fin	e to medium SAND, little fine to coarse Gravel & Cobble, trace Silt	· — — — — -	PID = 0 ppm
0.6	2'-				
	│ ┤			Macro Co	re Sample 0.6 - 1.2m (2' - 4'):
0.9	3'—				PID = 0 ppm
1.2	4'	Grav-Brown 1	fine to coarse SAND, little fine to coarse Gravel, trace Silt		
		3.2, 2.5		Macro Co	re Sample 1.2 - 2.4m (4' - 8'):
1.5	5'-				·
	-				PID = 0 ppm
1.8	6'-	:			
	-				
2.1	7'—			_	
2.4	8'—	Light-Bro	wn fine SAND, little Silt	Macro Co	re Sample 2.4 - 2.74m (8' - 9'):
	-		,		PID = 0 ppm
2.74	9' —				
	-				
3	10'-				,
	-				
3.4	11'—				
	-	Pefusal a	at 2.74 m (9') on Bluish-Green Phyllite		
3.7	12	riciusai a	R2.74 III (0) ON BIGION CLOSEN CHYMIC		
	-				
4	13'-				
	-				
4.3	14'				
	_		,		
4.6	15'-				
	-				
4.9	16'-				
	-	·			
m	<u>l ft</u>	l	Trace = 0-10% Little = 10-20% Some = 20	n 35%	And = 35-50%
Soi	l Des	cription Explanation	Trace = 0-10% Little = 10-20% Some = 26	J-3070	Alia - 35-5070

Date	Star	ted: 12/13/99	Logical Environmental Solut	ions	Boring No.: GP-9		
Date	Date Finished: 12/13/99		Geoprobe Boring Log	Geoprobe Boring Log			
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfo Route 1 Improvements	rd, CT	Inspector: Cindy Knight		
De	pth ft	Descriptio	n		Comments		
		TOPSOIL	13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	e Sample 0 - 0.6m (0' - 2'):		
0.3	1'—	Brown fine	e to medium SAND, little fine to coarse Gravel & Cobble, trace Silt		PID = 0 ppm		
0.6	2'-						
	-			Macro Cor	re Sample 0.6 - 1.2m (2' - 4'):		
0.9	3'-				PID = 0.7 ppm		
1.2	4' —	Gray-Brown f	ine to coarse SAND, little fine to coarse Gravel, trace Silt				
1.5	E,			Macro Cor	re Sample 1.2 - 2.4m (4' - 8'):		
1.0	5'—						
				ŀ	PID = 0 ppm		
1.8	6'-						
	-						
2.1	7'-						
2.4	8' —			Macro Cor	e Sample 2.4 - 2.74m (8' - 9'):		
		Light-Brov	wn fine SAND, little Silt				
2.74	9' _			F	PID = 0 ppm		
	_						
3	10				·		
•							
o 4							
3.4	-						
		Refusal at	t 2.74 m (9') on Bluish-Green Phyllite				
3.7	12'-						
	-						
4	13 '-						
	-						
4.3	14'-						
	_						
4.6	15'—		1				
4.9	16'—						
₹. <i>च</i>							
n		`					
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20	-35%	And = 35-50%		

Date	Starte	ed: 12/13/99	Logical Environmental Solut	ions	Boring No.: GP-10
Date	Finish	12/13/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	r: Wa	lyne Lineberry	Project Location:Task 210 Surficial Site Investigation - Milfor Route 1 Improvements		Inspector: Cindy Knight
Dep m	oth ft	Description			Comments
		TOPSOIL	- 10 cm (4") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'-			ı	PID = 0.4 ppm
0.6	2'-				
0.9	3'-				re Sample 0.6 - 1.2 m (2' - 4'):
	_	Duestin OII	T, little fine to coarse Gravel, trace fine Sand	l	PID = 0 ppm
1.2	4'-	DLOWN 211	Try maio milo to obaroo Gravon, addo milo dand		
				Macro Co	re Sample 1.2 - 2.1 m (4' - 7'):
1.5	5'-			1	PID = 0 ppm
1.8	6'-				
2.1	7'-		:		
	-				
2.4	8' —				
2.74	9']	Refusal at	t 2.1 m (7') on Bluish-Green Phyllite		
3	10'-				
3.4	11'				
3.7	124				
4	13'-				
/			·		
4.3	14'-				
4.6	15'-				
	-				
4.9	16'-				
	╽┋┪				
m Soil	استند Desc	ription Explanation	Trace = 0-10% Little = 10-20% Some = 20)-35%	And = 35-50%

Date	Start	ed: 12/14/99	Logical Environmental Solut	ions	GP-11
Date	Finis	12/14/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfo Route 1 Improvements	rd, CT	Inspector: Cindy Knight
De _n	oth ft	Descriptio	n		Comments
		TOPSOIL	- 10 cm (4") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	e Sample 0 - 0.6m (0' - 2'):
0.3	1'-			F	PID = 0 ppm
0.6	2'-				
	-			Macro Coi	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3'-			F	PID = 0 ppm
		Brown SIL	T, little fine to coarse Gravel, trace fine Sand		
1.2	4' –				
1.5	5'-			Macro Co	re Sample 1.2 - 2.1 m (4' - 7'):
				i	PID = 0 ppm
1.8	6'-				·
	_				
2.1	7'-				
. .					
2.4	8' —				
2.74	9' —	Refusal at	2.1 m (7') on Bluish-Green Phyllite		
	-				
3	10'-				
	-		•		
3.4	11'-				
3.7	12				
J.1	_				
4	13'-				
4.3	14'-				
4.0					
4.6)			
4.9	16'—				
m	ft				
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20)-35%	And = 35-50%

Date Started: 12/14/99 Date Finished: 12/14/99		ed: 12/14/99	Logical Environmental Solutions		Boring No.: GP-12
		12/14/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milf Route 1 Improvements	ord, CT	Inspector: Cindy Knight
De m	pth ft	Descriptio	n		Comments
<u> </u>		TOPSOIL	- 15 cm (6") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'-			F	PID = 0 ppm
0.6	2'-	Brown fine	to medium SAND, little fine to coarse Gravel, trace Silt		
0.9	3'-			Macro Co	re Sample 0.6 - 1.2 m (2' - 4'):
บ.ษ	$]$			I	PID = 0 ppm
1.2	4'-				
				Macro Co	re Sample 1.2 - 1.5 m (4' - 5'):
1.5	5' —				PID = 0 ppm
1.8	6'-				
					!
2.1	7'-	Refusal at	1.5 m (5') on Bluish-Green Phyllite		
2.4					
2.74	9' —				
	-				
3	10'				
3.4					
J.7					
3.7	12'-				
4	13				
4.3	144				
4.6	15'-				
4.0					
4.9	16) The state of the		
m					
Soil	Desc	ription Explanation	Trace = 0-10% Little = 10-20% Some = 2	20-35%	And = 35-50%

Date	Starte	ed: 12/14/99	Logical Environmental Solution	Boring No.: GP-13
Date Finished: 12/14/99		hed:	Geoprobe Boring Log	Maguire Group Inc.
Drille	er: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford, CT Route 1 Improvements	T Inspector: Cindy Knight
De		Description		Comments
n			OUT 1 - For Cond 9 fine Croyol	ro Core Sample 0 - 0.6m (0' - 2'):
				PID = 0 ppm
0.3	1'-			r io o ppin
0.6	2'-	Brown fin	ne to medium SAND, little fine to coarse Gravel & Cobble, trace Silt	
				cro Core Sample 0.6 - 1.2m (2' - 4'):
0.9	3'-		Mac	i
.				PID = 0 ppm
4.0	ا_بد			
1.2	4'			
1.5	5'-		4.00	
	╽┤	End of B	oring at 1.2 meters (4')	
1.8	6'-			
	-			
2.1	7'-			
	╽╶┧		×	
2.4	8' —			
s , - T	\lfloor \rfloor			
0 74				
2.74	3 -			
	┦			
3	10'-			
3.4	114			
	-			
3.7	12		-	
4	13-			
7				
4.3	144			
	=			
4.6	15'-			
4.9	16'—			
m	ft		Trace = 0-10% Little = 10-20% Some = 20-35%	6 And = 35-50%
Soil	Desc	rintion Explanation	Trace = 0-10% Little = 10-20% Some = 20-35%	7 11td - 55-56 /0

Date	Start	ed: 12/14/99	Logical Environmental Solut	ions	Boring No.: GP-14
Date Finished: 12/14/99			Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfo Route 1 Improvements	ord, CT	Inspector: Cindy Knight
De m	pth ft	Description	n		Comments
		TOPSOIL	- 15 cm (6") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'-			F	PID = 0 ppm
	-				,
0.6	2'-				
0.9	2,	Brown fine	e to medium SAND, little fine to coarse Gravel, trace Silt	Macro Co	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3' —	DIOMITIME	to mediani ozave, illio inio to ocales citatel, trace cita	ŗ	PID = 0.2 ppm
1.2	4'	•			
	-		•	Macro Co	re Sample 1.2 - 1.8 m (4' - 6'):
1.5	5' —				PID = 0 ppm
1.8	6'-				
1.0					
2.1	7'-				
	-		. a co		
2.4	8' -	Refusal at	1.8 m (6') on Bluish-Green Phyllite		
2.74	9' 🗕				
3	10'—				
o 4	141				
3.4					
3.7	12'-				
	_				
4	13'-				
4.3	141				
7.0					
4.6	15'-				
	$\mid \dashv$				
4.9	16'—				
n	ft				
Soil	Desc	ription Explanation	Trace = 0-10% Little = 10-20% Some = 20)-35%	And = $35-50\%$

Date	Start	ed: 12/14/99	Logical Environmental Sol	utions	Boring No.: GP-15
Date	Finisl	hed: 12/14/99	Geoprobe Boring Lo	g	Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - N Route 1 Improvements	Milford, CT	Inspector: Cindy Knight
De m	oth ft	Descriptio	n		Comments
		TOPSOIL	- 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	e Sample 0 - 0.6m (0' - 2'):
0.3	1'-			ı	PID = 0 ppm
		!			
0.6	2'-				
0.0	3, _	Dark-Brow	vn fine to coarse SAND, little fine to coarse Gravel, trace Silt	Macro Co	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3'-	Daik-Diov	vir fille to coarse or trap, into the coarse cravel, and coarse	ı	PID = 0 ppm
1.2	4'-				
				Macro Co	re Sample 1.2 - 2.1 m (4' - 7'):
1.5	5'—				PID = 0 ppm
1.8	6'-				
	_	Brown fine	e to medium SAND, little fine to coarse Gravel, trace Silt		
2.1	7'-				
2.4	8' —				
2.74	9' 🗕	5			
	-	Refusal a	t 2.1 m (7') on Bluish-Green Phyllite		
3	10-				
3.4	111				
3.7	124			v.	
4	13'-				
4.3	14'-				
4.6	15'-				
4.9	16'				
+ .∀					
m	L _{ff}				
	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some	= 20-35%	And = 35-50%

Date Started	12/14/99	Logical Environmental Solut	tions	Boring No.: GP-16
Date Finishe	d: 12/14/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Driller: Wayr	ne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfo Route 1 Improvements	ord, CT	Inspector: Cindy Knight
Depth n ff	Descripti	on		Comments
	TOPSOI	L - 13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Co	re Sample 0 - 0.6m (0' - 2'):
0.3 1'				PID = 0 ppm
0.6 2'-	Light-Bro	own fine SAND & SILT, trace fine Gravel		
0.9 3'				ore Sample 0.6 - 1.2m (2' - 4'):
				PID = 0 ppm
1.2 4'-	× .			
1.5 5'-			Macro Co	ore Sample 1.2 - 2.4m (4' - 8'):
	Light-Br	rown fine SAND & SILT, trace fine Gravel		PID = 0 ppm
1.8 6'-				
2.1 7'-				
2.4 8'-	,			
2.4 0				ore Sample 2.4 - 3.7m (8' - 12'):
2.74 9' —				PID = 0 ppm
3 10-	Light-Br	own fine SAND & SILT, trace fine Gravel		
3.4 11'-	ę			
3.7 12'-			· · ·	
4 13				
4.3 14	Refusal	at 3.7 m (12') on Bluish-Green Phyllite		
4.6 15'-				
4.9 16'—				
Soil Descri	ption Explanation	Trace = 0-10% Little = 10-20% Some = 2	:0-35%	And = 35-50%

Date Started: 12/14/99 Date Finished: 12/14/99		ed: 12/14/99	Logical Environmental Solutions	Boring No.: GP-17
			Logical Environmental Solutions Geoprobe Boring Log	
Driller: Wayne Lineberry		ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford, CT Route 1 Improvements	Inspector: Cindy Knight
De		Descriptio		Comments
m				ore Sample 0 - 0.6m (0' - 2'):
	-		. ,	
0.3	1'-			PID = 0 ppm
	4			
0.6	2'-	Light-Brow	vn fine SAND & SILT, trace fine Gravel	
0.0		Ligiti-bio.		
0.9	_ اد		Macro C	Core Sample 0.6 - 1.2m (2' - 4'):
0.9	3'			PID = 0 ppm
1.2	4' —			
	-			
1.5	5'—		Macro C	Core Sample 1.2 - 2.4m (4' - 8'):
	\mid \dashv			PID = 0 ppm
1.8	6'-			
		Light-Bro	wn fine SAND & SILT, trace fine Gravel	×1
2.1	7 _	Ů		
۷. ۱	$\begin{bmatrix} ' \end{bmatrix}$			
2.4	8,—		Macro C	Core Sample 2.4 - 3.7m (8' - 12'):
	▎┨	<u> </u>		PID = 0 ppm
2.74	9' —			
	-			
3	10'-			
3.4	11'-	Brown fin	e to medium SAND, little Silt, trace fine to coarse Gravel	
3.7	125			
3.7	125			
4	13'-			
	-			
4.3	14'-	Refusal a	t 3.7 m (12') on Bluish-Green Phyllite	
4.6	15'—			
	_			
4.9	16' —			
m				
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20-35%	And = 35-50%

Date	Starte	ed: 12/14/99	Logical Environmental Solutio	ns	Boring No.: GP-18
Date Finished: 12/14/99		hed: 12/14/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford, 6 Route 1 Improvements	СТ	Inspector: Cindy Knight
De	pth ft	Description	on		Comments
				acro Cor	e Sample 0 - 0.6m (0' - 2'):
				F	PID = 0 ppm
0.3	1'—			•	
	-				
0.6	2'-	Light-Brov	wn fine SAND & SILT, trace fine Gravel		
,	-		M	acro Cor	re Sample 0.6 - 1.2m (2' - 4'):
0.9	3'-				PID = 0.2 ppm
				ſ	. — о.е рүш
1.2	4'-				
1.5	5'-		Ma	acro Cor	re Sample 1.2 - 2.4m (4' - 8'):
				F	PID = 0 ppm
1.8	6'-				
1.0	$ \tilde{\ }]$	Light-Bro	own fine SAND & SILT, trace fine Gravel		
2.1		ыди-ы			
۷. ۱	′				
2.4	8,4			acro Cor	re Sample 2.4 - 3 m (8' - 10'):
				F	PID = 0 ppm
2.74	9' - 				
	$\mid \dashv$		V.		
3	10				
	-				
3.4	11'-		,		
	-		,		
3.7	12				
	-	Refusal a	at 3 m (10') on Bluish-Green Phyllite		
4	13'-				
4.3	14'-				
4.6	15'-				
	<u> </u>				
4.9	16'_				
4.9	16'—				
m	_				
Soil	l Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20-35	5%	And = 35-50%

Date	Starte	ed: 12/14/99	Logical Environmental Soluti	ons	Boring No.: GP-19
Date Finished: 12/14/99		hed: 12/14/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford Route 1 Improvements	d, CT	Inspector: Cindy Knight
De n	pth ft	Descriptio	n		Comments
		TOPSOIL	- 13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	e Sample 0 - 0.6m (0' - 2'):
0.3	1'—			F	PID = 0 ppm
0.6	2'-		Crovel trace Silt		
0.9	3'-	Brown fine	e to medium SAND, little fine to coarse Gravel, trace Silt	Macro Cor	re Sample 0.6 - 1.2 m (2' - 4'):
0.0	_			ſ	PID = 0 ppm
1.2	4'-				
				Macro Co	re Sample 1.2 - 1.5 m (4' - 5'):
1.5	5'-			i	PID = 0 ppm
1.8	6' —				
2.1	7'-				
2.4	8'-	Refusal a	t 1.5 m (5') on Bluish-Green Phyllite		
2.74	9' —				
•	10				
3	10'-				
3.4	11'-				
	-				
3.7	12				
4	13 <u>'</u>				
4.3	14'-				
4.6	15'-				
1.0					
4.9	16'-				
اندی	Desc	ription Explanation	Trace = 0-10% Little = 10-20% Some = 20-	35%	And = 35-50%

Date Started: 12/14/99 Date Finished: 12/14/99		ted: 12/14/99	Logical Environmental Solutions		Boring No.: GP-20
			Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfo Route 1 Improvements	ord, CT	Inspector: Cindy Knight
De m	pth _ft	Description			Comments
		TOPSOIL	- 13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Co	re Sample 0 - 0.6m (0' - 2'):
0.3	1'				PID = 0 ppm
0.0	-				
0.6	2'—	Brown fin	e to medium SAND, little fine to coarse Gravel, trace Silt	_	
	۱ ,	5.0	,	Macro Co	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3'-				PID = 0 ppm
1.2	4'-				
	╽╡			Macro Co	re Sample 1.2 - 1.5 m (4' - 5'):
1.5	5'-				PID = 0 ppm
	-				• •
1.8	6'—				
	-				
2.1	7'—				
	-	Refusal a	at 1.5 m (5') on Bluish-Green Phyllite		
2.4	8'-				
2.74	9'				
^{د.} ،' ُ					
3	10'				
	-				
3.4	11'-				
	-			j.	
3.7	12'-				
	12'				
4	13'-				
4.3	14'-				
	-				
4.6	15'—				
	-				
4.9	16'—				
		1			
m Soi	Des	cription Explanation	Trace = 0-10% Little = 10-20% Some = 2	0-35%	And = 35-50%

Date	Start	ed: 12/14/99	Logical Environmental Solu	tions	Boring No.: GP-21
Date	Finis	hed: 12/14/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location:Task 210 Surficial Site Investigation - Milf Route 1 Improvements	ord, CT	Inspector: Cindy Knight
De	pth ft	Descriptio			Comments
		TOPSOIL	- 13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'-	Dark-Brow	vn SILT, little fine Sand, trace fine to coarse Gravel		PID = 0 ppm
0.6	2'-				
	-			Macro Coi	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3'-	Brown SII	_T, little fine to coarse Gravel & Cobble, trace fine Sand	ı	PID = 0 ppm
1.2	4'-				
1.5	5' —	_`		Macro Co	re Sample 1.2 - 2.1 m (4' - 7'):
1.0	$ \tilde{\ } $	Brown fine	e to medium SAND, little fine to coarse Gravel, trace Silt	I	PID = 0.2 ppm
1.8	6'-	DIOW!! IIII			
2.1	7'-			, ,	
2.4	8' —				
2.74	9' —	Refusal a	t 2.1 m (7') on Bluish-Green Phyllite		
3	10'-				
J					
3.4	11'—				
3.7	12				
	$\mid \dashv$				
4	13 <u>'</u>				
4.3	14				
4.6	15'-				
→. 0					
4.9	16'—				
m	ft.		T 0.400/	20. 25%	And = 25 500/
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 2	∠U- 30%	And = 35-50%

Date	Starte	ed: 12/15/99	Logical Environmental Soluti	ons	Boring No.: GP-22
Date	Finish	12/15/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	r: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford Route 1 Improvements	d, CT	Inspector: Cindy Knight
De;	oth _{ff}	Descriptio			Comments
181			CHT (Fire Cond & Fire Croud)	Macro Core	e Sample 0 - 0.6m (0' - 2'):
0.3	1'-	Dark-Brow	vn SILT, little fine Sand, trace fine to coarse Gravel	P	ID = 0 ppm
0.6	2'-			Macro Core	e Sample 0.6 - 1.2 m (2' - 4'):
0.9	3' —	Brown SII	LT, little fine to coarse Gravel & Cobble, trace fine Sand		PID = 0.2 ppm
1.2	4' -				
1.5	5' —				e Sample 1.2 - 2.1 m (4' - 7'): PID = 0 ppm
1.8	6' —	Brown fine to medium SAND, little fine to coarse Gravel, trace Silt			••
2.1	7'-				
2.4	8'-				
2.74	9' —	Refusal a	t 2.1 m (7') on Bluish-Green Phyllite		
3	10-				
3.4					
3.7	12				
4	13'-				
4.3	14				
	-				
4.6	15'—				
4.9	16'-				
m					
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20-	.35%	And = 35-50%

Date	Start	ted: 12/15/99	Logical Environmental Solut	tions	Boring No.: GP-23
Date	Finis	12/15/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfo Route 1 Improvements	ord, CT	Inspector: Cindy Knight
De m	pth _ft	Descriptio	n		Comments
		TOPSOIL	- 13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'—			I	PID = 0 ppm
	_				
0.6	2' —				0 1 00 10 (01 1)
0.9	3'-	Dunium fina	e to medium SAND, little fine to coarse Gravel, trace Silt		re Sample 0.6 - 1.2m (2' - 4'): PID = 0 ppm
	_	DIOWII IIIIR	e to medium SAND, little line to coalse Gravel, trace on		The second second
1.2	4'-				
1.5	5' —				re Sample 1.2 - 2.4m (4' - 8'):
4.0	-			i	PID = 0 ppm
1.8	6'—				
2.1	7'—				
2.4	8'-	rtaki Para	vn fine SAND & SILT, trace fine Gravel		
7	–	right-Brov	WITHINE SAIND α SILT, HACE HITE GLAVE!		re Sample 2.4 - 3 m (8' - 10'): PID = 0 ppm
2.74	9' _			'	
	_	Brown fine	e to medium SAND, little fine to coarse Gravel & Cobble, trace Silt		
3	10—				
3.4	11'—				
3.7	125				
]3./	_	Refusal a	t 3 m (10') on Bluish-Green Phyllite		
4	13'-				
4.3	14				
T.5	_				
4.6	15'—				
4.9	16'—				
	_				
m Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20	0-35%	And = 35-50%

Date	Start	ed: 12/15/99	Logical Environmenta	Solutions	Boring No.: GP-24
Date Finished: 12/15/99			Logical Environmenta Geoprobe Boring		Client: Maguire Group Inc.
Drille	r: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investi Route 1 Improvemen	gation - Milford, CT ts	Inspector: Cindy Knight
_ De	oth _f	Descriptio	n		Comments
111			- 13 cm (5") - Dark Brown SILT, trace fine Sand & fir	ne Gravel Macro Co	re Sample 0 - 0.6m (0' - 2'):
0.5		. 3. 33.2	, <i>,</i>		PID = 0 ppm
0.3	1'-				
0.6	2'-				
	-			Macro Co	re Sample 0.6 - 1.2m (2' - 4'):
0.9	3'-	Brown fin	e to medium SAND, little fine to coarse Gravel, trace		PID = 0 ppm
4.5		3,0,,,,			
1.2	4' 🗖				
1.5	5'-			Macro Co	re Sample 1.2 - 2.4m (4' - 8'):
	$\mid \dashv$				PID = 0.1 ppm
1.8	6'-				
2.1	7'-				
2.4	8'-	Light-Bro	wn fine SAND & SILT, trace fine Gravel	Maara Ca	ro Comple 2.4 . 2 m (9' . 10'\)
	_	Light-bio			re Sample 2.4 - 3 m (8' - 10'): PID = 0 ppm
2.74	9' —				. — — — — — — — — — — — — — — — — — — —
		Brown fin	e to medium SAND, little fine to coarse Gravel & Cob	ble, trace Silt	
3	10'-				
3.4	11'-				
3.7	12'-				
		Refusal a	t 3 m (10') on Bluish-Green Phyllite		
4	13 '				
4.3	14-				
	-				
4.6	15'-				
	-				
4.9	16'— —				
m	ft			0. 00.050/	A 1 = 05 500/
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20%	Some = 20-35%	And = 35-50%

Date	Starte	3 d :			Boring No.:
Date Started: 12/15/99		12/15/99	Logical Environmental Solutions		GP-25
Date	Finish	ned: 12/15/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	r: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfo Route 1 Improvements	rd, CT	Inspector: Cindy Knight
Dep m	oth _ft	Descriptio	on		Comments
		TOPSOIL	- 13 cm (5") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
				ı	PID = 0 ppm
0.3	1'-				
0.6	2'-				
				Macro Co	re Sample 0.6 - 1.2m (2' - 4'):
0.9	3'-	Brown fin	e to medium SAND, little fine to coarse Gravel, trace Silt	ı	PID = 0 ppm
		PIOMII IIII			
1.2	4'				
				14. C	en Commis 4.0. 0.4 /41. 00
1.5	5'-				re Sample 1.2 - 2.4m (4' - 8'):
				l	PID = 0 ppm
1.8	6'-				
2.1	7'-				
			,		
2.4	8'-	Liaht-Bro	own fine SAND & SILT, trace fine Gravel	Macro Co	re Sample 2.4 - 3 m (8' - 10'):
		g10			
2.74	9' —				PID = 0 ppm
	4	Drown for	e to medium SAND, little fine to coarse Gravel & Cobble, trace Silt		
3	10'-	DIOWN IIN			
3.4	11'-				
3.7	12				
J".′		.	at 3 m (10') on Rhuish-Green Phyllite		
4	131	Refusal &	at 3 m (10') on Bluish-Green Phyllite		
[l.			
, ^					
4.3	14-				
4.0	15.				
4.6					
4.9	16'-				
_					
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20	0-35%	And = 35-50%

Date	Star	ted: 12/15/99	Logical Environmental Soluti	ions	Boring No.: GP-26
Date Finished: 12/15/99			Geoprobe Boring Log		Client: Maguire Group Inc.
Drill	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements	d, CT	Inspector: Cindy Knight
De n	pth ft	Descriptio	n		Comments
		ASPHALT	- 7.6 cm (3")	Macro Co	re Sample 0 - 0.6m (0' - 2'):
0.3	1'—	Brown fine	e to medium SAND, little fine to coarse Gravel, trace Silt		PID = 0.6 ppm
0.6	2'-				
	_			Macro Co	re Sample 0.6 - 1.2m (2' - 4'):
0.9	3'-				PID = 1.0 ppm
	-	,			
1.2	4'—	Light-Brov	vn fine to medium SAND, little Silt, trace fine Gravel		
1.5	5'-			Macro Co	re Sample 1.2 - 2.4m (4' - 8'):
	Ĭ _			1	PID = 0.6 ppm
1.8	6'—				
	-				
2.1	7'—				
	_				
2.4	8'—			Macro Co	re Sample 2.4 - 3.7 m (8' - 12'):
2.74	1 9' —			I	PID = 0.5 ppm
	_	Light-Brow	n fine to medium SAND, little Silt, trace fine Gravel		
3	10'-	Light-blow	Willie to medium of the since one, dues into ordine.		
	-				
3.4	11'—				
o -	10				
3.1	12'-				
4	13'-				
	-				
1.3	14'				
	-	Refusal at	3.7 m (12') on Bluish-Green Phyllite		
4.6	15'—				
1.9	16'—				
Ŧ.IJ					
n	ft			0.70/	
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20-	35%	And = 35-50%

Date	Starte	ed: 12/15/99	Logical Environmental Solut	ione	Boring No.: GP-27
Date Finished:			Logical Environmental Solutions Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milforman Route 1 Improvements	rd, CT	Inspector: Cindy Knight
De	oth ft	Description	on		Comments
m		TOPSOIL	- 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'-	Gray-Bro	wn fine to coarse SAND, trace Silt	i	PID = 0.4 ppm
0.6	2'-				
	-			Macro Co	re Sample 0.6 - 1.2m (2' - 4'):
0.9	3'-				PID = 0.2 ppm
1.2	4'-	Light-Bro	wn fine to medium SAND, little Silt, trace fine Gravel		
1.5	5'_			Macro Co	re Sample 1.2 - 2.4m (4' - 8'):
1.0	$\lfloor \rfloor$			(PID = 0.2 ppm
1.8	6'-				
	-				
2.1	7'-				
2.4	8'-	Brown fi	ne SAND & SILT	Macro Co	re Sample 2.4 - 3.7 m (8' - 12'):
2.74	9']				PID = 0.1 ppm
	_				
3	10'-				
	-				
3.4	11'-	Brown fir	ne to coarse SAND, little fine Gravel & Cobble, trace Silt		
2 7	125				
3.7					
4	13'-				
	-				
4.3	14				
	-	Refusal a	at 3.7 m (12') on Bluish-Green Phyllite		
4.6	15'—				
4.9	16'-				
	_				
<u></u>	ft		- 0.400/ 1.00 40.000/	250/	And = 25 500/
Soi	Des	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20	J-35%	And = 35-50%

Date	Starte	ed: 12/15/99	Logical Environmental Soluti	ons	Boring No.: GP-28
Date Finished: 12/15/99		12/15/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	r: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford Route 1 Improvements	d, CT	Inspector: Cindy Knight
De _l	oth ft	Descriptio	n		Comments
			- 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'-	Gray-Brov	wn fine to coarse SAND, trace Silter and the second		PID = 0 ppm
0.6 0.9	2'-				re Sample 0.6 - 1.2m (2' - 4'):
1.2	4'-	Light-Brov	vn fine to medium SAND, little Silt, trace fine Gravel	l	PID = 0.2 ppm
1.5	5'-			Macro Core Sample 1.2 - 2.4m (4' - 8'): PID = 0 ppm	
1.8	6' –				
2.1	7'—	v		×	
	8' —	Brown fir	ne SAND & SILT		re Sample 2.4 - 3.7 m (8' - 12'): PID = 0 ppm
2.74	_			. 	.
3.4	10'-	Brown fin	e to coarse SAND, little fine Gravel & Cobble, trace Silt		
3.7	-				·
4	13-				
4.3	14				
4.6	– 15' –	Refusal a	t 3.7 m (12') on Bluish-Green Phyllite		
4.9	16'-				
m Soi	ft Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20	-35%	And = 35-50%

Date	Start	ed: 12/15/99	Logical Environmental Solut	ions	Boring No.: GP-29
Date	Finis	hed: 12/15/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements	rd, CT	Inspector: Cindy Knight
De	pth ft	Descriptio	n .		Comments
			- 7.6 cm (3")	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'-	Brown fine	e to medium SAND, little fine to coarse Gravel, trace Silt		PID = 0 ppm
	2'—	Black fine	SAND, little Silt, trace fine Gravel		:
	_			Macro Co	re Sample 0.6 - 1.2m (2' - 4'):
0.9	3'-			I	PID = 0 ppm
1.2	4'-	Brown fin	e SAND & SILT, trace fine Gravel		
1.5	5' —			Macro Cor	re Sample 1.2 - 2.4m (4' - 8'):
1.0	Ŭ			ı	PID = 0.4 ppm
1.8	6'-				
	-				
2.1	7'-	;			
	_	Brown fin	e to medium SAND, little fine Gravel & Cobble, trace Silt		
2.4	8'-			Macro Co	re Sample 2.4 - 2.74 m (8' - 9'):
	-			1	PID = 0 ppm
2.74	9' —				
3	10'-				
3	10-				
3.4	11'-				
	-				
3.7	12	Refusal a	t 2.74 m (9') on Bluish-Green Phyllite		
	_				
4	13'				
	-				
4.3	141-				
	-				
4.6	15'-				
4.9	16'—				
	_				
m	ft_		T 0 400/ 1/10 40 000/ 0 00	250/	And - 05 500/
Soil	Des	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20	-35%	And = 35-50%

Date	Starte	ed: 12/15/99	Logical Environmental Solut	tions	Boring No.: GP-30
Date Finished:		ned: 12/15/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfo Route 1 Improvements	ord, CT	Inspector: Cindy Knight
De _m	oth ft	Description	n		Comments
0.3	1'	TOPSOIL	- 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel e to medium SAND, little fine to coarse Gravel, trace Silt		re Sample 0 - 0.6m (0' - 2'): PID = 0 ppm
0.6	2'-	Black fine	SAND, little Silt, trace fine Gravel		
0.9	3'-				re Sample 0.6 - 1.2m (2' - 4'):
1.2	4' -	Brown fin	e SAND & SILT, trace fine Gravel		
1.5	5' —				re Sample 1.2 - 2.4m (4' - 8'): PID = 0 ppm
1.8	6' —				
2.1	7'—	Brown fin	e to medium SAND, little fine Gravel & Cobble, trace Silt		
2.4	8' —				re Sample 2.4 - 2.74 m (8' - 9'):
2.74	9' —			<u> </u>	PID = 0 ppm
3	- 10'- -				
3.4	11'-				
3.7	12	Refusal a	at 2.74 m (9') on Bluish-Green Phyllite		
4	13'-				
4.3	14'-				
4.6	15'-				
4.9	16'-				
m Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 2	20-35%	And = 35-50%

Date	Starte	ed: 12/15/99	Logical Environmental Soluti	ons	Boring No.: GP-31
Date	Finish		Geoprobe Boring Log		Client: Maguire Group Inc.
Orille	r: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford Route 1 Improvements	d, CT	Inspector: Cindy Knight
De	oth,	Descriptio	n		Comments
0.3	1'-		- 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel e SAND & SILT, trace fine Gravel		e Sample 0 - 0.6m (0' - 2'):
0.0	-	Red-Brow	vn fine to medium SAND, little Silt	- 	
,	2' -	Brown fine	e to medium SAND, trace fine Gravel		re Sample 0.6 - 1.2m (2' - 4'): PID = 0 ppm
1.2	4' —				
1.5	5'-	Black fine	e SAND, little Silt, trace fine to coarse Gravel		re Sample 1.2 - 2.4m (4' - 8'): PID = 0 ppm
1.8	6' —				
2.1	7' —	Light-Brov	wn fine to medium SAND, little fine Gravel & Cobble, trace Silt		
2.4	8' —				re Sample 2.4 - 2.74 m (8' - 9'): PID = 0 ppm
2.74	9' —				
3	10'-				
3.4	11'-				
3.7	12'- -	Refusal a	at 2.74 m (9') on Bluish-Green Phyllite		
4	13 <u>'</u> -				
4.3	14 <u>'</u>				
4.6	15'—	·			
4.9	16'—	,			
m	ft			0=5:	
Soil	Des	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20	-35%	And = 35-50%

Date	Starte	d: 12/16/99	Logical Environmental Solut	tions	Boring No.: GP-33
Date Finished: 12/16/99		ed:	Logical Environmental Solutions Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Way	ne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfo Route 1 Improvements	ord, CT	Inspector: Cindy Knight
De _l	oth	Descriptio	n		Comments
			- 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'			ľ	PID = 0 ppm
	-				·
0.6	2'-		i e e e e e e e e e e e e e e e e e e e		
	4			M 0	OI- O.C. 4.2 (21.41).
0.9	3'-				re Sample 0.6 - 1.2 m (2' - 4'):
0.0		Brown fine	e to medium SAND, little fine to coarse Gravel, trace Silt	l	PID = 0.2 ppm
4.0					
1.2	4'-				
				Macro Co	re Sample 1.2 - 2.1 m (4' - 7'):
1.5	5'			!	PID = 0 ppm
	- `				
1.8	6'-				
	-				
2.1	7'-				
	-				
2.4	8'				
	_				
2.74	9' _	Refusal a	t 2.1 m (7') on Bluish-Green Phyllite		
_	40'				
3	10				
3.4	114				
3.7	12'-				
4	13'-				
4.3	14'-				
4.6	15'-				
4.9	16'-				
+ .ઇ	16'-				
m Soil	Descr	ription Explanation	Trace = 0-10% Little = 10-20% Some = 2	0-35%	And = 35-50%

Date	Starte	ed: 12/16/99	Logical Environmental Solut	ions	Boring No.: GP-34
Date Finished: 12/16/99			Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	r: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements	d, CT	Inspector: Cindy Knight
De _l	oth ft	Descriptio			Comments
			- 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Co	re Sample 0 - 0.6m (0' - 2'):
					•
0.3	1'—				PID = 0 ppm
	╽┧				
0.6	2'-				
0.0					
0.9	3'-			Macro Co	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	$ $	Brown fin	e to medium SAND, little fine to coarse Gravel, trace Silt		PID = 0 ppm
		2.5	•		
1.2	4' —				
				Macro Co	re Sample 1.2 - 2.1 m (4' - 7'):
1.5	5'-	,			
					PID = 0 ppm
1.8	6'—				
	╽╶┧				
2.1	7'-				
0.4					
2.4	l° –				
	╽╡				
2.74	9' -	Refusal a	t 2.1 m (7') on Bluish-Green Phyllite		
	-				
3	10'-				
	│				
3.4	114				
3.7	12!				
3.7	12'-				
4	13				
			f		
4.3	14				
	∣ ⊢				
4.6	15'				
4.9	16'-				
		:			
m	L _{ft}				
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20	-35%	And = 35-50%

Date	Starte	ed: 12/16/99	Logical Environmental Soluti	ons	Boring No.: GP-35
Date	Finish	hed: 12/16/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements		Inspector: Cindy Knight
n De	epth ft	Descriptio			Comments
		TOPSOIL	- 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel		re Sample 0 - 0.6m (0' - 2'):
0.3	1'-	Light-Brov	wn fine SAND & SILT	ſ	PID = 0.1 ppm
0.6	2'				
0.0	2'			Macro Co	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3'-	l			PID = 0 ppm
	-				- ID – V ррш
1.2	4'-	Decree fin	e to coarse SAND, little fine to coarse Gravel, trace Silt		
		Brown fin	e to coarse ontro, mae mie to coarse craver, mass ont	Macro Co	re Sample 1.2 - 2.1 m (4' - 7'):
1.5	5'-				PID = 0 ppm
	$ \mid$				
1.8	6'-				
-	-				
2.1	7'-				
2.4	8'-				
			(O d ov (7)) an Bhigh Cross Bhullian		
2.74	4 9'	Refusal a	t 2.1 m (7') on Bluish-Green Phyllite		
3	10	;			
2.4					
ა.4	11'-				
27	124				
J.1	'-				
4	13'-				
т					
4.3	14'-				
	_				
4.6	15'-				
4.9	16'—				
	-				
m	<u>f</u>	L	Trace = 0-10% Little = 10-20% Some = 20-	_35%	And = 35-50%
Soi	1 Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20-	JJ /g	ATIO - 00-00 /0

Date	Starte	ed: 12/16/99	Logical Environmental Solu	tions	Boring No.: GP-36	
Date	Finish	ed: 12/16/99	Geoprobe Boring Log	Geoprobe Boring Log		
Drille	er: Way	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milf Route 1 Improvements		Inspector: Cindy Knight	
De _l	oth ft	Descriptio			Comments	
		TOPSOIL	- 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Coi	re Sample 0 - 0.6m (0' - 2'):	
0.3	1'-	Light-Brov	vn fine SAND & SILT	I	PID = 0 ppm	
0.6	2' -					
0.9	3'-				re Sample 0.6 - 1.2 m (2' - 4'): PID = 0.2 ppm	
				ı	гт <i>о –</i> 0.2 ррш	
1.2	4' —	Brown fin	e to coarse SAND, little fine to coarse Gravel, trace Silt			
	_,			Macro Co	re Sample 1.2 - 2.1 m (4' - 7'):	
1.5	5'-				PID = 0 ppm	
1.8	6' —					
0 4						
2.1	7'			_		
2.4	8' —					
074		Defect la	t 2.1 m (7") on Bluich-Green Phyllite			
2.74		Ketusal a	t 2.1 m (7') on Bluish-Green Phyllite			
3	10'-					
3.4	11'-					
3.7						
٠						
4	131					
4.3	144					
7.0						
4.6	15'-					
4.9	16'-					
m_	Lft.					
Soil	Desc	ription Explanation	Trace = 0-10% Little = 10-20% Some =	20-35%	And = 35-50%	

Date Started: 12/16/99 Date Finished: 12/16/99		ed: 12/16/99	Logical Environmental Solutions		Boring No.: GP-37
					Client: Maguire Group Inc.
Drille	er: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements	rd, CT	Inspector: Cindy Knight
De m	oth ff	Descriptio	n		Comments
		TOPSOIL	- 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	e Sample 0 - 0.6m (0' - 2'):
0.3	1'-	Brown fine	e SAND, little Silt, trace fine Gravel	i	PID = 0.1 ppm
0.6	2' -	Dark-Brov	vn fine to coarse SAND, little fine to coarse Gravel, trace Silt		re Sample 0.6 - 1.2m (2' - 4'):
0.9	3' —				PID = 0 ppm
1.2	4' —	Brown SII	T, little fine to coarse Gravel & Cobble, trace fine Sand		
1.5	5' —				re Sample 1.2 - 2.4m (4' - 8'): PID = 0.4 ppm
1.8	6'-				
2.1	7' —	Brown fine	e to coarse SAND, little fine Gravel & Cobble, trace Silt		
2.4	8'-			Macro Co	re Sample 2.4 - 2.74 m (8' - 9'):
2.74	9' 🗖				PID = 0 ppm
3	10'-				
3.4	11'-				
3.7	12'-	Refusal a	at 2.74 m (9') on Bluish-Green Phyllite		
4	13'-				
4.3	14				
4.6	15'-				·
4.9	16'—				
m	L Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20)-35%	And = 35-50%

Date	Start	ted: 12/16/99	Logical Environmental Solutions	Boring No.: GP-38
Date Finished: 12/16/99			Geoprobe Boring Log	Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford, CT Route 1 Improvements	Inspector: Cindy Knight
De	oth _{ff}	Descriptio	n	Comments
<u>,u</u>				Core Sample 0 - 0.6m (0' - 2'):
0.3	1'	Brown fine	e SAND, little Silt, trace fine Gravel	PID = 0.1 ppm
0.6	2'-			
	_	Dark-Brov	vn fine to coarse SAND, little fine to coarse Gravel, trace Silt Macro	Core Sample 0.6 - 1.2m (2' - 4'):
0.9	3'—			PID = 0 ppm
1.2	4' -	Brown SIL	T, little fine to coarse Gravel & Cobble, trace fine Sand	
1.5	5'-			Core Sample 1.2 - 2.4m (4' - 8'):
	_			PID = 0 ppm
1.8	6' —			
2.1	7'-	Brown fine		
2.4	8' —	·		Core Sample 2.4 - 2.74 m (8' - 9'):
2.74	0'_			PID = 0 ppm
۷.17	-			
3	10'-			
3.4	11'—			
3.7	12	Refusal a	t 2.74 m (9') on Bluish-Green Phyllite	
	_			
4	13'—			
4.3	14'-			
4.6	15' -			
	-			
4.9	16'— —			
m	ft	anintian Francescher	Trace = 0-10% Little = 10-20% Some = 20-35%	And = 35-50%
Soil	Des	cription Explanation	11acc - U-10/0 LILLIC - 10-20/0 Solite - 20-30/0	7 ii iu = 00 00 70

Date	Start	ed: 12/16/99	Logical Environmental Solution	Ons Boring No.: GP-39
Date	Finis	hed: 12/16/99	Geoprobe Boring Log	Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford, Route 1 Improvements	CT Inspector: Cindy Knight
De m	pth _{ft}	Descriptio	n	Comments
		ASPHALT	- 10 cm (4")	lacro Core Sample 0 - 0.6m (0' - 2'):
0.3	1'-			PID = 0 ppm
		Brown fine	e to coarse SAND, trace Silt & fine to coarse Gravel	
0.6	2'-	•		
				Macro Core Sample 0.6 - 1.2 m (2' - 4'):
0.9	3'-	- -	· · · · · · · · · · · · · · · · · · ·	PID = 0 ppm
1.2	4'-	Brown SIL	_T, trace fine Sand & Clay	
	_		N	//acro Core Sample 1.2 - 2.1 m (4' - 7'):
1.5	5'—			PID = 0 ppm
1.8	6'-	Brown fine	e to coarse SAND, little fine to coarse Gravel, trace Silt	
2.1	7'-	Brown fin	e to medium SAND, little fine to coarse Gravel & Cobble, trace Silt	
2.1				
2.4	8'-			
	-			
2.74	9' _	Refusal a	t 2.1 m (7') on Bluish-Green Phyllite	
3	10'-			
	$ \dashv$			
3.4	11'-			
3.7	124			
	-			
4	13'-			
4.0	_			
4.3	14-			<i>t</i>
4.6	15'-			
4.9	16'—			
m				
Soil	Desc	ription Explanation	Trace = 0-10% Little = 10-20% Some = 20-39	5% And = 35-50%

	01. 1				Boring No.:
Date Started: 12/16/99			Logical Environmental Solutions		GP-40
Date	Finis	hed: 12/16/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford, C Route 1 Improvements	СТ	Inspector: Cindy Knight
De	oth	Description	on		Comments
II			(41)	cro Cor	e Sample 0 - 0.6m (0' - 2'):
	│┤				PID = 0 ppm
0.3	1'-			Г	-ID - 0 ppm
	$ $	Brown fin	e to coarse SAND, trace Silt & fine to coarse Gravel		
0.6	2'-				
ſ	╽				
0.9	3'—		Ma 	acro Cor	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	$]$			F	PID = 0 ppm
1.2	4' —	Brown Sl	LT, trace fine Sand & Clay		
			Ma	acro Coi	re Sample 1.2 - 2.1 m (4' - 7'):
1.5	5'—				
	-	Duaren fin	e to coarse SAND, little fine to coarse Gravel, trace Silt	·	-10 - 0 ррш
1.8	6'-	Brown fin	e to coarse SAND, little line to coarse Graver, trace out		
				-	-
2.1	7	Brown fin	ne to medium SAND, little fine to coarse Gravel & Cobble, trace Silt		
0.4	0,				
2.4	8, —				
2.74	9'—	Refusal a	at 2.1 m (7') on Bluish-Green Phyllite		
	-				
3	10'-	~			
		-			
3.4	11'-				
3.7	12				
3.1					
4	13'-				
	-				
4.3	14'-				
4.6	15'-				
4.9	16'-				
m	ft				
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20-356	%	And = 35-50%

Date	Start	ed: 12/16/99	Logical Environmental Soluti	ons	Boring No.: GP-41
Date Finished: 12/16/99			Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	r: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford Route 1 Improvements	d, CT	Inspector: Cindy Knight
De n	oth ft	Descriptio	n		Comments
		TOPSOIL	- 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	e Sample 0 - 0.6m (0' - 2'):
0.3	1'-			F	PID = 0 ppm
		Brown fine	e to medium SAND, little fine to coarse Gravel & Cobble, trace Silt		
0.6	2'-	DIOWII IIIR	to mediani di uta, india inia ta dadi a da ara a		
				Macro Co	re Sample 0.6 - 1.2m (2' - 4'):
0.9	3'-				
			T. W. C. A. C.	1	PID = 0 ppm
1.2	4'-	Brown SIL	T, little fine to coarse Gravel & Cobble, trace fine Sand		
	-				0 1 4 0 0 4 7 (41 0)
1.5	5'—				re Sample 1.2 - 2.4m (4' - 8'):
	-			F	PID = 0 ppm
1.8	6'-				
	-	Brown fine	e to coarse SAND, little fine Gravel & Cobble, trace Silt		
2.1	7'				
2.4	8' 🗖			Macro Cor	e Sample 2.4 - 2.74 m (8' - 9'):
2.74	9' _			F	PID = 0 ppm
	_				
3	10'-				
3.4	11'-				
	-				
3.7	12'-	Refusal a	t 2.74 m (9') on Bluish-Green Phyllite		·
	-				
4	13 '-				
	-				
4.3	14'-				
4.6	15'—				
4.9	16'—				
m				<u></u>	
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20-	-35%	And = 35-50%

Date Started: 12/16/99 Date Finished: 12/16/99		ed: 12/16/99	Logical Environmental Solutio		Boring No.: GP-42
			Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	r: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements	rd, CT	Inspector: Cindy Knight
De	oth fi	Description	on		Comments
		TOPSOIL	- 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	e Sample 0 - 0.6m (0' - 2'):
0.3	1'-			ı	PID = 0 ppm
		Brown fin	e to medium SAND, little fine to coarse Gravel & Cobble, trace Silt		
0.6	2'-	Diowit init			
	-			Macro Co	re Sample 0.6 - 1.2m (2' - 4'):
0.9	3'-				PID = 0 ppm
1.2	4'—	Brown SII	T, little fine to coarse Gravel & Cobble, trace fine Sand		
1.5	5'—				e Sample 1.2 - 2.4m (4' - 8'):
	$\mid \dashv$			ſ	PID = 0 ppm
1.8	6'-				
2.1	7,	Brown fin	e to coarse SAND, little fine Gravel & Cobble, trace Silt		r
2.1	7' _				
2.4	8' —			Macro Co	re Sample 2.4 - 2.74 m (8' - 9'):
	-				PID = 0 ppm
2.74	9' -				
3	10'-				
3	10'-				
3.4	11'-				
	$\mid \cdot \mid$				
3.7	12'-	Refusal a	at 2.74 m (9') on Bluish-Green Phyllite		
4	13'-				
4.3	14'				
	$\mid \cdot \mid$				
4.6	15'—				
	-				
4.9	16'—				
m	l —				
Soil	Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20	-35%	And = 35-50%

Date Started:		ed: 12/16/99	Logical Environmental Solution		Boring No.: GP-43
Date	Finisl	hed: 12/16/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfo Route 1 Improvements	rd, CT	Inspector: Cindy Knight
De m	pth ft	Description	on		Comments
		TOPSOI	L - 18 cm (7") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Co	re Sample 0 - 0.6m (0' - 2'):
0.3	1'-			I	PID = 0 ppm
		Brown fin	ne to medium SAND, little fine to coarse Gravel & Cobble, trace Silt		
0.6	2'-				
0.9	3'-				re Sample 0.6 - 1.2m (2' - 4'):
1.2	4'-	Brown SI	LT, little fine to coarse Gravel & Cobble, trace fine Sand		PID = 0 ppm
1.5	5' –			Macro Co	re Sample 1.2 - 2.4m (4' - 8'):
	-			I	PID = 0 ppm
1.8	6'-				
2.1	7'-	Brown fir	ne to coarse SAND, little fine Gravel & Cobble, trace Silt		
	-				
2.4	8'-			Macro Co	re Sample 2.4 - 2.74 m (8' - 9'):
2.74	9' _				PID = 0 ppm
	-				
3	10'-				
3.4	11'—				
3.7	12	Refusal	at 2.74 m (9') on Bluish-Green Phyllite		
4	13				
-					
4.3	14'-				
4.6	15'—				
4.9	- 16'-				
	-				
m_ Soi	f Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20	0-35%	And = 35-50%

Date Started: 12/17/99 Date Finished: 12/17/99		d: 12/17/99	Logical Environmental Solutions [Boring No.: GP-44
		12/17/99			Client: Maguire Group Inc.
Drille	er: Way	ne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements	d, CT	Inspector: Cindy Knight
De _l	oth ft	Descriptio	n		Comments
		TOPSOIL	- 15 cm (6") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'—			F	PID = 0 ppm
	-				
0.6	2'-				
0.9	2, _	Proug fine	e to coarse SAND, little fine to coarse Gravel, trace Silt	Macro Co	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3' –	DIOMII IIII	e to coarse GAND, little fille to coarse chavel, trace on	i	PID = 0 ppm
1.2	4'-				
				Macro Co	re Sample 1.2 - 1.8 m (4' - 6'):
1.5	5'-			1	PID = 0 ppm
1.8	6'				
			\		
2.1	7'—				
2.4	ا ا				
د.4		Refusal a	t 1.8 m (6') on Bluish-Green Phyllite		
2.74	9' —				
3	10				
3.4	11'-				
3.7	12'-				
4	13'-	•			
4.3	14'				
4.6	15'-				
4.9	16'-				
m					
Soil	Descr	iption Explanation	Trace = 0-10% Little = 10-20% Some = 20	-35%	And = 35-50%

Date Started: 12/17/99 Date Finished: 12/17/99		ted: 12/17/99	Logical Environmental Solutions		Boring No.: GP-45	
			Geo	probe Boring	g Log	Client: Maguire Group Inc.
Drille	er: W	ayne Lineberry	Project Location: Task 2	210 Surficial Site Investion Route 1 Improvemen	gation - Milford, CT ts	Inspector: Cindy Knight
De m	pth ft	Descriptio	on			Comments
	_	TOPSOIL	- 15 cm (6") - Dark Brow	n SILT, trace fine Sand & fir	ne Gravel Macro Co	re Sample 0 - 0.6m (0' - 2'):
0.3	1'—					PID = 0 ppm
0.6	2'-					
0.9	3'-	Brown fine	e to coarse SAND, little fi	ne to coarse Gravel, trace S	ilt	ore Sample 0.6 - 1.2 m (2' - 4'): PID = 0 ppm
1.2	4' —			,		
1.5	5' -					ore Sample 1.2 - 1.8 m (4' - 6'): PID = 0 ppm
1.8	6' –					
2.1	- 7'-					
2.4	8' -	Refusal a	ut 1.8 m (6') on Bluish-Gre	een Phyllite		
2.74	9' –					
3	10'-					
3.4	11'-					
3.7	12'-					
4	13'-					
4.3	14					
4.6	15'-					
4.9	16'—					
m Soil	Des	cription Explanation	Trace = 0-10%	Little = 10-20%	Some = 20-35%	And = 35-50%

Date Started: Date Finished:		ed: 12/17/99	Logical Environmental Solutions		Boring No.: GP-46
		ned: 12/17/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Driller: Wayne Lineberry			Project Location: Task 210 Surficial Site Investigation - Milford Route 1 Improvements	d, CT	Inspector: Cindy Knight
De	pth _f	Descriptio	n		Comments
m			CHT to Sand 9 fine Croyol	Macro Cor	e Sample 0 - 0.6m (0' - 2'):
0.3	1'—			F	PID = 0 ppm
	-	Brown fine	e to medium SAND, trace fine Gravel & Silt		
0.6	2'-				
				Macro Cor	re Sample 0.6 - 1.2m (2' - 4'):
0.9	3'-				
		Brown SIL	T, little fine to coarse Gravel, trace fine Sand	•	15 opp
1.2	4'-				
4 6					
1.5	5'-	5 . l . (D -	river at 4.2 materia (41)		
1.8		End of Bo	ring at 1.2 meters (4')		
1.0	6'				
2.1	7'-				
2.4	8' —				
2.74	9' —				
	-				
3	10'-				
	$\mid \dashv$				
3.4	11'—				
•-					
3.7	12	•			
4	13'-				
T	[]		<i>(</i>		
4.3	14'-				
4.6	15'-				
4.9 ·	16'—				
m Soil	Desci	ription Explanation	Trace = 0-10% Little = 10-20% Some = 20-	35%	And = 35-50%

Date Started: 12/17/99 Date Finished: 12/17/99			Logical Environmental Solutions		Boring No.: GP-47
					Client: Maguire Group Inc.
Drille	r: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford, Route 1 Improvements	СТ	Inspector: Cindy Knight
De	oth .	Descriptio	n		Comments
m				lacro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'-	1010011			PID = 0 ppm
0.3	-	Brown fine	e to medium SAND, trace fine Gravel & Silt		
0.6	2'-		,		
	-		N	/lacro Co	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3'-				
	_				PID = 0.2 ppm
4.0	_ الم		\\		
1.2	4'-	B . 60	LT, little fine to coarse Gravel & Cobble, trace fine Sand		
	-	Brown Si	LI, little fine to coalse Glavel & Cobble, trace fine Saild	/lacro Co	re Sample 1.2 - 1.8 m (4' - 6'):
1.5	5' -			1	PID = 0 ppm
	_			'	. 15 орр
1.8	6'-				·····
	_				
2.1	7'				
Z. '					
2.4	8'	Refusal a	ıt 1.8 m (6') on Bluish-Green Phyllite		
2.74	9' —				
	_				
3	10'-				
ŀ	_				
3.4	111				
^{3.4}					
3.7	12	1			
	-				
4	13 '-				
	-				
4.3	14'-				
	_				
4.6	15'-				
7.0					
	_	1			
4.9	16'—	1			
	-	·			
m	l ft	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20-3	5%	And = 35-50%
1 SOII	Des	cription explanation	11auc - 0-10/0 Little - 10-20/0 Some - 20-0	U /U	/ WIG — 00-00 /0

Date Started:		ed: 12/17/99	Logical Environmental Solutions		Boring No.: GP-48
		ned: 12/17/99			Client: Maguire Group Inc.
Drille	er: Wa	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford Route 1 Improvements	ı - Milford, CT Inspector: Cindy Knigh	
De m	oth ft	Description	on		Comments
		TOPSOIL	15 cm (6") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
0.3	1'-			i	PID = 0 ppm
		Brown fine	e to medium SAND, trace fine Gravel & Silt		
0.6	2'-				
	-		s I	Macro Co	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3'-				
4.0					
1.2	4']	Brown SI	LT, little fine to coarse Gravel & Cobble, trace fine Sand		
1.5	5'-	5,0,,,,			re Sample 1.2 - 1.8 m (4' - 6'):
					PID = 0 ppm
1.8	6'-				
2.1	7'-				
2.4					
2.4	$ $	Refusal a	at 1.8 m (6') on Bluish-Green Phyllite		
2.74	9' 🗕				
3	10'				
3.4					
3.7	12				
0.,					
4	13 <u>'</u>				
	$\mid \dashv$				
4.3	14				
4.2					
4.6					
4.9	16'—				
m Soil	l Desc	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20-3	35%	And = 35-50%

Date Started: 12/17/99 Date Finished: 12/17/99		ed: 12/17/99	Logical Environmental Solutions		Boring No.: GP-49
		hed:	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milford Route 1 Improvements	d, CT	Inspector: Cindy Knight
De	oth	Descript	ion		Comments
<u>m</u>			IL - 15 cm (6") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Co	re Sample 0 - 0.6m (0' - 2'):
0.3	1'-			i	PID = 0 ppm
0.5	-	Brown fi	ne to medium SAND, trace fine Gravel & Silt		
0.6	2'-	`			
	_			Macro Co	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3'-				PID = 0.3 ppm
1.2	4'-				
	-	Brown S	SILT, little fine to coarse Gravel & Cobble, trace fine Sand	Macro Co	re Sample 1.2 - 1.8 m (4' - 6'):
1.5	5'-				PID = 0 ppm
	-				
1.8	6' –				
2.1	7'-				
2.4	8' —	Refusal	at 1.8 m (6') on Bluish-Green Phyllite		
2.74	-				
2.14					
3	10'-				
	_				
3.4	11'				
37	12				
3.,	-				
4	13'-				
4.3	14				
4.6	15'—				
	-				
4.9	16'—				
m_					
Soi	Des	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20-	-35%	And = 35-50%

Date	Starte	d: 12/17/99	Logical Environmental Solut	ione	Boring No.: GP-50
Date	Finish	<u> </u>	Logical Environmental Solutions Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Way	yne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor	rd, CT	Inspector: Cindy Knight
De	pth_	Descripti			Comments
m			L - 15 cm (6") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
				ſ	PID = 0 ppm
0.3	1'				
0.6	2'				
0.0					0
0.9	3'-	Brown S	ILT, little fine to coarse Gravel & Cobble, trace fine Sand		re Sample 0.6 - 1.2 m (2' - 4'):
					PID = 0 ppm
1.2	4'-				
	-			Macro Co	re Sample 1.2 - 1.8 m (4' - 6'):
1.5	5' -				PID = 0 ppm
					, in a province
1.8	6'+				
2.1	7'-				
2.4	8'-				
2.4		Refusal	at 1.8 m (6') on Bluish-Green Phyllite		
2.74	9' -		e		
3	10'-				
	-				
3.4	11'-				
3.7	12				
4	13'-				
4.3	14				
4.6	15'-				
	4				
4.9	16'-				
	-				
m	L Door	ription Explanation	Trace = 0-10% Little = 10-20% Some = 20	D-35%	And = 35-50%
1301	1 DE20	TIPRIOTI EXPIBITATION		· · · · · · · · · · · · · · · · · · ·	

Date Started: Date Finished:		ed: 12/17/99	Logical Environmental Solutions Geoprobe Boring Log		Solutions	Boring No.: GP-51
		ned: 12/17/99			Client: Maguire Group Inc.	
Driller: Wayne Lineberry			Project Location: Task	c 210 Surficial Site Investiga Route 1 Improvements	ation - Milford, CT s	Inspector: Cindy Knight
De _l	oth ft	Descriptio	n			Comments
		TOPSOIL	15 cm (6") - Dark Bro	own SILT, trace fine Sand & fine	e Gravel Macro Coi	re Sample 0 - 0.6m (0' - 2'):
						PID = 0 ppm
0.3	1'-					
0.6	2'-					
0.0						O
0.9	3'-	Brown SIL	_T, little fine to coarse 0	Gravel & Cobble, trace fine San	u	re Sample 0.6 - 1.2 m (2' - 4'):
						PID = 0 ppm
1.2	4'-					
	_				Macro Co	re Sample 1.2 - 1.8 m (4' - 6'):
1.5	5'—					PID = 0 ppm
	╽╡					
1.8	6'-					
2.1	7'-					
2.1	$ ' \rfloor$					
2.4	8'-					
		Refusal a	t 1.8 m (6') on Bluish-G	Green Phyllite		
2.74	9' —	:				
3	10'-					
	-					
3.4	11'-					
3.7	12					
3.1	'-					
4	13 <u>'</u>					
4.3	14'-					
	-					
4.6	15'—)			
4.0						
4.9	16.—					
m	ft					
Soil	Desc	cription Explanation	Trace = 0-10%	Little = 10-20%	Some = 20-35%	And = 35-50%

Date Started:		ed: 12/17/99	Logical Environmental Solutions		Boring No.: GP-52
		hed: 12/17/99	Geoprobe Boring Log		Client: Maguire Group Inc.
Drille	er: Wa	ayne Lineberry	Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements	d, CT	Inspector: Cindy Knight
De m	pth _ft_	Descriptio	n		Comments
			- 15 cm (6") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	e Sample 0 - 0.6m (0' - 2'):
0.3	1'—			F	PID = 0 ppm
	-				
0.6	2'-				
0.9	3'-	Brown SIL	T, little fine to coarse Gravel & Cobble, trace fine Sand		re Sample 0.6 - 1.2 m (2' - 4'):
				•	PID = 0.2 ppm
1.2	4'-				
1.5	5'—			Macro Co	re Sample 1.2 - 1.8 m (4' - 6'):
				ļ	PID = 0 ppm
1.8	6'-				
2.1					
د. ۱					
2.4	8'-	Refusal a	t 1.8 m (6') on Bluish-Green Phyllite		
0.74			•		
2.74					
3	10				
3.4	11'-				
3.7	12'-				
	-				
4	13'-				
4.3	14				
4.6	15'-				
4.9	16'-				
	-				
m Soil	Desc	ription Explanation	Trace = 0-10% Little = 10-20% Some = 20-	-35%	And = 35-50%

Date	Start	ed: 12/17/99	Logical Environmental Solut	ions	Boring No.: GP-53
Date Finished: 12/17/99			Geoprobe Boring Log		Client: Maguire Group Inc.
Driller: Wayne Lineberry			Project Location: Task 210 Surficial Site Investigation - Milfor Route 1 Improvements	rd, CT Inspector: Cindy Knight	
Dep	oth ft	Descriptio	n		Comments
		TOPSOIL	- 15 cm (6") - Dark Brown SILT, trace fine Sand & fine Gravel	Macro Cor	re Sample 0 - 0.6m (0' - 2'):
	-				PID = 0 ppm
0.3	1'-			'	- и – о ррш
	4		?		
0,6	2'	(
0,0					
		Brown SII	T, little fine to coarse Gravel & Cobble, trace fine Sand	Macro Co	re Sample 0.6 - 1.2 m (2' - 4'):
0.9	3'			!	PID = 0 ppm
	-				
1.2	4'-				
	-			Maara Ca	Comple 1 2 1 9 m (4' 6'):
1.5	5'—			iviacro Co	re Sample 1.2 - 1.8 m (4' - 6'):
				I	PID = 0 ppm
	01				
1.8	6'-				
2.1	7'-				
	-	·			
2.4	8'-		A CONTROL OF THE CONT		
		Refusal a	t 1.8 m (6') on Bluish-Green Phyllite		
2.74	۵'				
2.77		:			
3	10'-				
	-				
3.4	11'-				
	_				
3.7	121				
,	<u>`</u> _				
		,			
4	13				
	-				
4.3	144				
	-				
4.6	15'-				
	_				
4.9	16'—				
	-	•			
, m]			
Soil	Des	cription Explanation	Trace = 0-10% Little = 10-20% Some = 20)-35%	And = 35-50%